数据平台的展望

文章讲述了数据团队的不同角色,包括数据分析、算法、数仓开发和数据工具的使用。强调了数据中台作为数据服务的重要性,应具备快速创建API、安全访问控制、弹性扩展和审计功能。模型即服务涉及模型创建、发布和迭代。用户标签系统则关注标签的创建、计算和使用,以支持精准营销。
摘要由CSDN通过智能技术生成

数据团队角色     

1.数据分析(定指标 看数据 异动分析 实验设计 业务诊断 战略规划)->可能会变成取数工具人

2.算法 (复杂的业务抽象成规则和算法  虽然是弱人工智能  推荐系统)

3.数仓开发 将一个个埋点指标维度落地的团队  依赖高质量的数据内容 是基础

4.数据工具 企业都希望做到数据驱动,使用数据的一个重要卡点就是数据获取和数据应用成本太高,尽管有海量的数据,如果大家不会用,其实也没有效果 ,数据工具的价值就在于,将数据生产,处理,分析,可视化等步骤变得简单便捷,让数据驱动成为可实现的目标

服务于业务

典型的数据中台应用

数据即服务(允许数据开发人员无须编程,通过统一的数据服务api,即可实现公司各业务部门对数据的访问控制)应该具备几个功能

1.快速,自助创建数据服务API

2.灵活的安全访问控制策略(访问的白名单和黑名单)

3.可弹性扩展的架构以支持高并发

4.全局的数据访问行为的审计(对每个api访问次数,明确资源使用的情况,以及该api的数据血缘)

模型即服务(可以将人工智能和机器学习算法所生成的模型以API的形式发布,供外部使用)

        1.模型的创建(是一个离线过程,涉及数据预处理,模型的训练,评估,迭代)

2.模型的发布(把离线的ai模型进行生产部署)

3.模型的反馈迭代

用户标签系统(可以根据企业的业务情况,对用户的静态信息及动态行为进行标注,以便企业根据用户的标签分类来进行有针对性的市场推广和营销活动)

        1.标签的创建(用户标签是业务强相关的数据,所以标签的创建应该是可以由业务部门自助完成,这样业务部门可以根据业务的发展和变化,不断创建符合市场变化需求的用户标签,从而保证用户标签的时效性)

2.标签的计算(随着标签体系变得日益庞大,标签计算只会越来越复杂,数据团队在用户标签系统的建设过程中,要不断优化数据模型和计算模型,提高标签计算效率)

3.标签的使用(用户标签可以通过数据即服务API的方式开放给其他数据应用使用,也可以提供交互查询界面,供业务人员自己查询特定子集)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值