Python 画雷达反射率图

本文介绍如何使用Python进行WRF模拟数据的读取与分析,包括最大反射率的绘制及垂直剖面图的制作过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 导库
import numpy as np
from matplotlib import pyplot as plt
from matplotlib.cm import get_cmap
from matplotlib.colors import from_levels_and_colors
import cartopy.crs as ccrs
import cartopy.io.shapereader as shpreader
from cartopy.feature import NaturalEarthFeature, COLORS
from netCDF4 import Dataset
from wrf import (getvar, to_np, get_cartopy, latlon_coords, vertcross,
                 cartopy_xlim, cartopy_ylim, interpline, CoordPair, ALL_TIMES)
from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER
import matplotlib.ticker as mticker
import warnings
warnings.filterwarnings('ignore')
2. 读取变量
wrf_file = Dataset("./data/wrfout_d02_2017-08-22_12")

# 读取变量
it = 7
ter  = getvar(wrf_file, "ter",  timeidx=0)
ht   = getvar(wrf_file, "z",    timeidx=it)
dbz  = getvar(wrf_file, "dbz",  timeidx=it)
mdbz = getvar(wrf_file, "mdbz", timeidx=it)
3. 最大反射率
# 垂直剖面的起始经纬度
cross_start = CoordPair(lat=24.0, lon=112.0)
cross_end   = CoordPair(lat=19.0, lon=119.0)

lats, lons = latlon_coords(mdbz)
wrf_proj = get_cartopy(mdbz)

# 创建figure, 最大雷达回波和垂直剖面子图
fig = plt.figure(figsize=(12,10))
ax_mdbz  = fig.add_subplot(1,1,1, projection=wrf_proj)

########################### 绘制mdbz
lats, lons = latlon_coords(mdbz)
# 获取行政和海岸线数据shapefile
province  = shpreader.Reader('./data/china_shp/province.shp').geometries()
ax_mdbz.add_geometries(province, ccrs.PlateCarree(), facecolor='none', edgecolor='black', zorder=1)
ax_mdbz.coastlines('50m', linewidth=1.0, edgecolor="black")

mdbz_levels = np.arange(5., 75., 5.)
mdbz_contours = ax_mdbz.contourf(lons, lats, mdbz,
                             levels=mdbz_levels,
                             transform=ccrs.PlateCarree(),
                             cmap=get_cmap("rainbow"))

plt.colorbar(mdbz_contours, ax=ax_mdbz, orientation="vertical", fraction=0.03, pad=.05)
ax_mdbz.plot([cross_start.lon, cross_end.lon],
             [cross_start.lat, cross_end.lat], color="red", marker="o", zorder=10, transform=ccrs.PlateCarree())

ax_mdbz.set_title("Max Reflectivity (dBZ)", {"fontsize" : 20})

在这里插入图片描述

4. 插值dBZ至垂直剖面

# 插值前转化成对数
z_log = 10**(dbz/10.) # Use linear Z for interpolation
# 插值至垂直剖面
z_cross = vertcross(z_log, ht, wrfin=wrf_file,
                    start_point=cross_start,
                    end_point=cross_end,
                    latlon=True, meta=True)
# 插值后转换回来
dbz_cross = 10.0 * np.log10(z_cross)

# 前面的操作使变量丢失属性,将属性添加回去
dbz_cross.attrs.update(dbz.attrs)
dbz_cross.attrs["description"] = "radar reflectivity cross section"
dbz_cross.attrs["units"] = "dBZ"
5. 插值地形高度至cross line
# 插值地形高度至cross line
ter_line = interpline(ter, wrfin=wrf_file, start_point=cross_start,
                      end_point=cross_end)
6.绘制垂直剖面dbz
# 插值地形高度至cross line
fig = plt.figure(figsize=(12,10))
ax_cross = fig.add_subplot(1,1,1)


########################### 绘制垂直剖面dbz
dbz_levels = np.arange(5., 75., 5.)  # 14个区间

# Create the color table found on NWS pages. # 14个区间
dbz_rgb = np.array([[4,233,231],
                    [1,159,244], [3,0,244],
                    [2,253,2], [1,197,1],
                    [0,142,0], [253,248,2],
                    [229,188,0], [253,149,0],
                    [253,0,0], [212,0,0],
                    [188,0,0],[248,0,253],
                    [152,84,198]], np.float32) / 255.0

#是一个辅助函数,可以帮助创建cmap和norm实例,其行为类似于Contourf的level和colors参数的行为
dbz_cmap, dbz_norm = from_levels_and_colors(dbz_levels, dbz_rgb,
                                           extend="max")

xs = np.arange(0, dbz_cross.shape[-1], 1)
ys = to_np(dbz_cross.coords["vertical"])
dbz_np = to_np(dbz_cross) 
dbz_contours = ax_cross.contourf(xs,
                                 ys[0:90],
                                 dbz_np[0:90,:],
                                 levels=dbz_levels,
                                 cmap=dbz_cmap,
                                 norm=dbz_norm,
                                 extend="max")
# Add the color bar
cb_dbz = fig.colorbar(dbz_contours, ax=ax_cross)
cb_dbz.ax.tick_params(labelsize=8)

# Fill in the mountain area
ht_fill = ax_cross.fill_between(xs, 0, to_np(ter_line),
                                facecolor="saddlebrown")

# Set the x-ticks to use latitude and longitude labels
coord_pairs = to_np(dbz_cross.coords["xy_loc"])
x_ticks = np.arange(coord_pairs.shape[0])
x_labels = [pair.latlon_str() for pair in to_np(coord_pairs)]


thin = 10
ax_cross.set_xticks(x_ticks[::thin])
ax_cross.set_xticklabels(x_labels[::thin], rotation=35, fontsize=8)

# Set the x-axis and  y-axis labels
ax_cross.set_xlabel("Lat, Lon", fontsize=15)
ax_cross.set_ylabel("Height(m)", fontsize=15)

plt.savefig("wrf_cross_dbz.png")
plt.show()

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值