题库 5.多重背包问题II
有 N 种物品和一个容量是 V 的背包。
第 i 种物品最多有 si 件,每件体积是 vi,价值是 wi。
求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。输出最大价值。
输入格式
第一行两个整数,N,V ,用空格隔开,分别表示物品种数和背包容积。
接下来有 N 行,每行三个整数 vi,wi,si,用空格隔开,分别表示第 i 种物品的体积、价值和数量。
输出格式
输出一个整数,表示最大价值。
数据范围
0< N ≤1000
0< V ≤2000
0< vi,wi, si ≤2000
输入样例
4 5
1 2 3
2 4 1
3 4 3
4 5 2
输出样例
10
题解
考查多重背包的二进制优化方法,具体代码如下:
#include<bits/stdc++.h>
using namespace std;
int main()
{
int N,V,v[1001],w[1001],dp[2001],s[1001]
int a[25000],b[25000]; //2的12次方大于2000,说明一个数
//最多可以拆成12个,故数组容量乘12
cin>>N>>V;
memset(dp,0,sizeof(dp));
for(int i=0;i<N;i++)
cin>>v[i]>>w[i]>>s[i];
int total=0;
for(int i=0;i<N;i++)
{
for(int j=1;j<s[i];j<<=1) //二进制拆分
{
a[total]=j*w[i]; //存价值
b[total++]=j*v[i]; //存容量
s[i]-=j;
}
if(s[i]) //当s[i]>0;
{
a[total]=s[i]*w[i];
b[total++]=s[i]*v[i];
}
}
for(int i=0;i<total;i++) //01背包问题
for(int j=V;j>=b[i];j--)
dp[j]=max(dp[j],dp[j-b[i]]+a[i]);
cout<<dp[V];
return 0;
}