题库随记:多重背包问题II

题库 5.多重背包问题II

N 种物品和一个容量是 V 的背包。
i 种物品最多有 si 件,每件体积是 vi,价值是 wi
求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。输出最大价值。
输入格式
第一行两个整数,NV ,用空格隔开,分别表示物品种数和背包容积。
接下来有 N 行,每行三个整数 vi,wi,si,用空格隔开,分别表示第 i 种物品的体积、价值和数量。
输出格式
输出一个整数,表示最大价值。
数据范围
0< N ≤1000
0< V ≤2000
0< vi,wi, si ≤2000
输入样例
4 5
1 2 3
2 4 1
3 4 3
4 5 2
输出样例
10

题解
考查多重背包的二进制优化方法,具体代码如下:

#include<bits/stdc++.h>
using namespace std;
int main()
{
    int N,V,v[1001],w[1001],dp[2001],s[1001]
    int a[25000],b[25000];  //2的12次方大于2000,说明一个数
    					  //最多可以拆成12个,故数组容量乘12 
    cin>>N>>V;        
    memset(dp,0,sizeof(dp));
    for(int i=0;i<N;i++)
     cin>>v[i]>>w[i]>>s[i];
    int total=0;  
    for(int i=0;i<N;i++)
    {
        for(int j=1;j<s[i];j<<=1)  //二进制拆分 
         {
            a[total]=j*w[i];  //存价值 
            b[total++]=j*v[i];  //存容量 
            s[i]-=j;
         }
         if(s[i])  //当s[i]>0; 
         {
             a[total]=s[i]*w[i];
             b[total++]=s[i]*v[i];
         }
    }
    for(int i=0;i<total;i++)  //01背包问题 
     for(int j=V;j>=b[i];j--)
      dp[j]=max(dp[j],dp[j-b[i]]+a[i]);
    cout<<dp[V];
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值