题库随记:多重背包问题III

题库 6.多重背包问题III

N 种物品和一个容量是 V 的背包。
i 种物品最多有 si 件,每件体积是 vi,价值是 wi
求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。输出最大价值。
输入格式
第一行两个整数,NV ,用空格隔开,分别表示物品种数和背包容积。
接下来有 N 行,每行三个整数 vi,wi,si,用空格隔开,分别表示第 i 种物品的体积、价值和数量。
输出格式
输出一个整数,表示最大价值。
数据范围
0< N ≤ 1000
0< V ≤ 20000
0< vi,wi, si ≤ 20000
输入样例
4 5
1 2 3
2 4 1
3 4 3
4 5 2
输出样例
10

题解
考查多重背包的单调队列优化方法,具体代码注释如下:

#include <bits/stdc++.h>
using namespace std;

int n, m;
int f[20002], q[20002], g[20002];
int main() {
    cin >> n >> m;
    for (int i = 0; i <= n; ++i) {
        int v, w, s;
        cin >> v >> w >> s;
        memcpy(g, f, sizeof(f));
        for (int j = 0; j < v; ++j) {
            /*
            hh为队首位置
            tt为队尾位置
            数值越大,表示位置越后面
            队首在队尾后面队列为空,即hh>tt时队列为空
            */
            int hh = 0, tt = -1;
            /* 
            q[]为单调队列
            存储前个s(物品数量)中的最大值
            数组从头(hh)到尾(tt)单调递减
            */
            for (int k = j; k <= m; k += v) {

                // f[k] = g[k]; //这一行我没理解有什么用,去掉后也能ac?我认为前面使用过了memcpy,这里应该一定是相等的

                //k代表假设当前背包容量为k
                //q[hh]为队首元素(最大值的下标)
                //g[]为dp[i-1][]
                //f[]为dp[i][]

                /*
                维护一个大小为k的区间
                使最大值为前k个元素中最大
                (k - q[hh]) / v 表示拿取物品的数量(相当于最原始的多重背包dp的k)
                */
                if (hh <= tt && (k - q[hh]) / v > s) {
                    hh++;
                }

                /*
                若队内有值,该值就是前k个元素的最大值
                (k - q[hh]) / v 表示拿取物品的数量(相当于最原始的多重背包dp的k)
                q[hh]为队首元素(g[]中前k个数中最大值的下标),g[]为dp[i-1][]
                所以 g[q[hh]]为只考虑前i-1个物品时,拿前q[hh]个物品的最大价值
                */
                if (hh <= tt) {
                    f[k] = max(f[k], g[q[hh]] + (k - q[hh]) / v * w);
                }

                /*
                若队尾元素小于当前元素,则队尾元素出队;
                若队内一个元素比当前元素小,则该元素一定不会被用到(单调队列思想)
                g[q[tt]] + (k - q[tt]) / v * w 
                与
                g[k] - (k - j) / v * w
                分别表示队尾元素的值和当前元素的值
                */
                while (hh <= tt && g[q[tt]] - (q[tt] - j) / v * w <= g[k] - (k - j) / v * w) {
                    tt--;
                }

                //去除了比当前小的元素,保证队列里的元素都比当前元素大,入队
                q[++tt] = k;
            }
        }
    }
    cout << f[m] << endl;
}


//变量名换成了英文名,可能更容易理解

#include <bits/stdc++.h>
using namespace std;

int item_number, packge_volumn;
int volume, value, number;

int dp[20010];
int dp_prev[20010];
int monotone_queue[20010];

int main() {
    cin >> item_number >> packge_volumn;
    for (int i = 0; i < item_number; ++i) {
        memcpy(dp_prev, dp, sizeof(dp));
        cin >> volume >> value >> number;
        for (int j = 0; j < volume; ++j) {
            int head = 0, tail = -1;
            for (int k = j; k <= packge_volumn; k += volume) {
                if (head <= tail && (k - monotone_queue[head]) / volume > number)
                    head++;

                if (head <= tail)
                    dp[k] = max(dp[k], dp_prev[monotone_queue[head]] + (k - monotone_queue[head]) / volume * value);

                while (head <= tail && dp_prev[monotone_queue[tail]] - (monotone_queue[tail] - j) / volume * value<= dp_prev[k] - (k - j) / volume * value) {
                    --tail;
                }

                monotone_queue[++tail] = k;
            }
        }
    }
    cout << dp[packge_volumn] << endl;
}
//看了10min才有头绪,仍需多耕耘orz
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值