题目地址:
https://www.acwing.com/problem/content/description/6/
有 N N N种物品和一个容量是 V V V的背包。第 i i i种物品最多有 s i s_i si件,每件体积是 v i v_i vi,价值是 w i w_i wi。求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。输出最大价值。
输入格式:
第一行两个整数,
N
,
V
(
0
<
N
≤
1000
,
0
<
V
≤
20000
)
N,V (0<N≤1000, 0<V≤20000)
N,V(0<N≤1000,0<V≤20000),用空格隔开,分别表示物品种数和背包容积。接下来有
N
N
N行,每行三个整数
v
i
,
w
i
,
s
i
v_i,w_i,s_i
vi,wi,si,用空格隔开,分别表示第
i
i
i种物品的体积、价值和数量。
输出格式:
输出一个整数,表示最大价值。
数据范围:
0
<
N
≤
1000
0<N≤1000
0<N≤1000
0
<
V
≤
20000
0<V≤20000
0<V≤20000
0
<
v
i
,
w
i
,
s
i
≤
20000
0<v_i,w_i,s_i≤20000
0<vi,wi,si≤20000
思路仍然是动态规划。但这题的数据范围如果用二进制优化会超时,必须用单调队列优化(二进制优化的话时间复杂度大概是 O ( V ∑ log s i ) O(V\sum \log s_i) O(V∑logsi),而 N V log s > 1 0 8 NV\log s>10^8 NVlogs>108了,所以会超时。而单调队列优化可以优化到 O ( N V ) O(NV) O(NV)的时间复杂度)。设 f [ i ] [ k ] f[i][k] f[i][k]是只考虑前 i i i个物品,且总体积不超过 k k k的情况下能得到的最大价值。那么可以按照第 i i i个物品拿多少个来分类,可以不拿(即拿 0 0 0个),或拿 1 , 2 , . . . 1,2,... 1,2,...直到达到 s i s_i si或者将要超过体积限制为止。如果不拿的话,最大价值就是 f [ i − 1 ] [ j ] f[i-1][j] f[i−1][j];如果拿的话,最大价值就是 max { f [ i − 1 ] [ j − s i v i ] + s i w i , f [ i − 1 ] [ j − ( s i − 1 ) v i ] + ( s i − 1 ) w i , . . . , f [ i − 1 ] [ j − 2 v i ] + 2 w i , f [ i − 1 ] [ j − v i ] + w i } \max\{\\f[i-1][j-s_iv_i]+s_iw_i , \\f[i-1][j-(s_i-1)v_i]+(s_i-1)w_i, \\... , \\f[i-1][j-2v_i]+2w_i, \\f[i-1][j-v_i]+w_i \} max{f[i−1][j−sivi]+siwi,f[i−1][j−(si−1)vi]+(si−1)wi,...,f[i−1][j−2vi]+2wi,f[i−1][j−vi]+wi}当然,这里的个数 s i s_i si不一定能取到,要看容量限制,但大致的意思就是,在算 f [ i ] [ j ] f[i][j] f[i][j]的时候,需要看一下诸 t ≤ s i , f [ i − 1 ] [ j − t v i ] t\le s_i, f[i-1][j-tv_i] t≤si,f[i−1][j−tvi]的值。我们可以看到,所有的 j − t v i j-tv_i j−tvi与 v i v_i vi模的余数都是相等的,从而想到在算 f [ i ] f[i] f[i]的时候,按模 v i v_i vi的余数不同分别计算。设我们要算余数为 r r r的情形(当然 r < v i r<v_i r<vi),则有: f [ i ] [ r ] = f [ i − 1 ] [ r ] f [ i ] [ r + v i ] = max { f [ i − 1 ] [ r + v i ] , f [ i − 1 ] [ r ] + w i } , f [ i ] [ r + 2 v i ] = max { f [ i − 1 ] [ r + 2 v i ] , f [ i − 1 ] [ r + v i ] + w i , f [ i − 1 ] [ r ] + 2 w i } . . . f[i][r]=f[i-1][r] \\f[i][r+v_i]=\max\{f[i-1][r+v_i],f[i-1][r]+w_i\}, \\f[i][r+2v_i]=\max\{f[i-1][r+2v_i],f[i-1][r+v_i]+w_i,f[i-1][r]+2w_i\}\\... f[i][r]=f[i−1][r]f[i][r+vi]=max{f[i−1][r+vi],f[i−1][r]+wi},f[i][r+2vi]=max{f[i−1][r+2vi],f[i−1][r+vi]+wi,f[i−1][r]+2wi}...做一下变形: f [ i ] [ r ] = f [ i − 1 ] [ r ] f [ i ] [ r + v i ] = max { f [ i − 1 ] [ r + v i ] − w i , f [ i − 1 ] [ r ] } + w i , f [ i ] [ r + 2 v i ] = max { f [ i − 1 ] [ r + 2 v i ] − 2 w i , f [ i − 1 ] [ r + v i ] − w i , f [ i − 1 ] [ r ] } + 2 w i . . . f[i][r]=f[i-1][r] \\f[i][r+v_i]=\max\{f[i-1][r+v_i]-w_i,f[i-1][r]\}+w_i, \\f[i][r+2v_i]=\max\{f[i-1][r+2v_i]-2w_i,f[i-1][r+v_i]-w_i,f[i-1][r]\}+2w_i\\... f[i][r]=f[i−1][r]f[i][r+vi]=max{f[i−1][r+vi]−wi,f[i−1][r]}+wi,f[i][r+2vi]=max{f[i−1][r+2vi]−2wi,f[i−1][r+vi]−wi,f[i−1][r]}+2wi...这样,队列里只需要存形如 f [ i − 1 ] [ r + l v i ] − l v i , 0 ≤ l ≤ s i f[i-1][r+lv_i]-lv_i,0\le l\le s_i f[i−1][r+lvi]−lvi,0≤l≤si这样的值就行了,这些值是个长最多 s i s_i si的滑动窗口,而滑动窗口求最值是有一个很好的解决方案的,就是用单调队列(事实上队列里存的是滑动窗口里的诸 r + l v i r+lv_i r+lvi,否则的话无法知道队头是不是要出队),参考https://blog.csdn.net/qq_46105170/article/details/113801601。代码如下:
#include <iostream>
using namespace std;
const int N = 1010, M = 20010;
// 分别存物品种类数和背包总容量
int n, m;
// 分别是体积、价值和个数
int v[N], w[N], s[N];
int f[N][M];
// 要手动开个队列,用STL的队列会有超时风险。这里的队列里只存f的第二维,
// 但是对于单调队列的单调性,则要把k个物品i的价值k * w[i]加到后面去
int q[M];
int main() {
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i++)
// v体积,w价值,s个数
cin >> v[i] >> w[i] >> s[i];
for (int i = 1; i <= n; i++)
// 枚举模v[i]的余数
for (int j = 0; j < v[i]; j++) {
// 初始化队列
int hh = 0, tt = 0;
// 枚举模v[i]等于j的所有体积
for (int k = j; k <= m; k += v[i]) {
// 枚举不取第i个物品的情况
f[i][k] = f[i - 1][k];
// 出了窗口的就出队(其实就是被个数s[i]限制了)
if (hh < tt && q[hh] < k - s[i] * v[i]) hh++;
// 维护队列的单调下降性
while (hh < tt && f[i - 1][q[tt - 1]] - q[tt - 1] / v[i] * w[i] <= f[i - 1][k] - k / v[i] * w[i])
tt--;
// 把当前体积入队
q[tt++] = k;
// 那么队头就存了最优的第i个物品的选取个数所代表的那个“j”(这个j不是代码里的j,而是上面的分析里的f的第二维)
f[i][k] = f[i - 1][q[hh]] + (k - q[hh]) / v[i] * w[i];
}
}
printf("%d\n", f[n][m]);
}
时空复杂度 O ( N V ) O(NV) O(NV)。
可以考虑空间优化,用滚动数组:
#include <iostream>
using namespace std;
const int N = 1010, M = 20010;
int n, m;
int f[2][M];
int q[M];
int main() {
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i++) {
// v体积,w价值,s个数
int v, w, s;
scanf("%d%d%d", &v, &w, &s);
for (int j = 0; j < v; j++) {
int hh = 0, tt = 0;
for (int k = j; k <= m; k += v) {
if (hh < tt && q[hh] < k - s * v) hh++;
while (hh < tt && f[i - 1 & 1][q[tt - 1]] - q[tt - 1] / v * w <=
f[i - 1 & 1][k] - k / v * w)
tt--;
q[tt++] = k;
f[i & 1][k] = f[i - 1 & 1][q[hh]] + (k - q[hh]) / v * w;
}
}
}
printf("%d\n", f[n & 1][m]);
}
时间复杂度不变,空间 O ( V ) O(V) O(V)。