【ACWing】6. 多重背包问题 III

题目地址:

https://www.acwing.com/problem/content/description/6/

N N N种物品和一个容量是 V V V的背包。第 i i i种物品最多有 s i s_i si件,每件体积是 v i v_i vi,价值是 w i w_i wi。求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。输出最大价值。

输入格式:
第一行两个整数, N , V ( 0 < N ≤ 1000 , 0 < V ≤ 20000 ) N,V (0<N≤1000, 0<V≤20000) N,V(0<N1000,0<V20000),用空格隔开,分别表示物品种数和背包容积。接下来有 N N N行,每行三个整数 v i , w i , s i v_i,w_i,s_i vi,wi,si,用空格隔开,分别表示第 i i i种物品的体积、价值和数量。

输出格式:
输出一个整数,表示最大价值。

数据范围:
0 < N ≤ 1000 0<N≤1000 0<N1000
0 < V ≤ 20000 0<V≤20000 0<V20000
0 < v i , w i , s i ≤ 20000 0<v_i,w_i,s_i≤20000 0<vi,wi,si20000

思路仍然是动态规划。但这题的数据范围如果用二进制优化会超时,必须用单调队列优化(二进制优化的话时间复杂度大概是 O ( V ∑ log ⁡ s i ) O(V\sum \log s_i) O(Vlogsi),而 N V log ⁡ s > 1 0 8 NV\log s>10^8 NVlogs>108了,所以会超时。而单调队列优化可以优化到 O ( N V ) O(NV) O(NV)的时间复杂度)。设 f [ i ] [ k ] f[i][k] f[i][k]是只考虑前 i i i个物品,且总体积不超过 k k k的情况下能得到的最大价值。那么可以按照第 i i i个物品拿多少个来分类,可以不拿(即拿 0 0 0个),或拿 1 , 2 , . . . 1,2,... 1,2,...直到达到 s i s_i si或者将要超过体积限制为止。如果不拿的话,最大价值就是 f [ i − 1 ] [ j ] f[i-1][j] f[i1][j];如果拿的话,最大价值就是 max ⁡ { f [ i − 1 ] [ j − s i v i ] + s i w i , f [ i − 1 ] [ j − ( s i − 1 ) v i ] + ( s i − 1 ) w i , . . . , f [ i − 1 ] [ j − 2 v i ] + 2 w i , f [ i − 1 ] [ j − v i ] + w i } \max\{\\f[i-1][j-s_iv_i]+s_iw_i , \\f[i-1][j-(s_i-1)v_i]+(s_i-1)w_i, \\... , \\f[i-1][j-2v_i]+2w_i, \\f[i-1][j-v_i]+w_i \} max{f[i1][jsivi]+siwi,f[i1][j(si1)vi]+(si1)wi,...,f[i1][j2vi]+2wi,f[i1][jvi]+wi}当然,这里的个数 s i s_i si不一定能取到,要看容量限制,但大致的意思就是,在算 f [ i ] [ j ] f[i][j] f[i][j]的时候,需要看一下诸 t ≤ s i , f [ i − 1 ] [ j − t v i ] t\le s_i, f[i-1][j-tv_i] tsi,f[i1][jtvi]的值。我们可以看到,所有的 j − t v i j-tv_i jtvi v i v_i vi模的余数都是相等的,从而想到在算 f [ i ] f[i] f[i]的时候,按模 v i v_i vi的余数不同分别计算。设我们要算余数为 r r r的情形(当然 r < v i r<v_i r<vi),则有: f [ i ] [ r ] = f [ i − 1 ] [ r ] f [ i ] [ r + v i ] = max ⁡ { f [ i − 1 ] [ r + v i ] , f [ i − 1 ] [ r ] + w i } , f [ i ] [ r + 2 v i ] = max ⁡ { f [ i − 1 ] [ r + 2 v i ] , f [ i − 1 ] [ r + v i ] + w i , f [ i − 1 ] [ r ] + 2 w i } . . . f[i][r]=f[i-1][r] \\f[i][r+v_i]=\max\{f[i-1][r+v_i],f[i-1][r]+w_i\}, \\f[i][r+2v_i]=\max\{f[i-1][r+2v_i],f[i-1][r+v_i]+w_i,f[i-1][r]+2w_i\}\\... f[i][r]=f[i1][r]f[i][r+vi]=max{f[i1][r+vi],f[i1][r]+wi},f[i][r+2vi]=max{f[i1][r+2vi],f[i1][r+vi]+wi,f[i1][r]+2wi}...做一下变形: f [ i ] [ r ] = f [ i − 1 ] [ r ] f [ i ] [ r + v i ] = max ⁡ { f [ i − 1 ] [ r + v i ] − w i , f [ i − 1 ] [ r ] } + w i , f [ i ] [ r + 2 v i ] = max ⁡ { f [ i − 1 ] [ r + 2 v i ] − 2 w i , f [ i − 1 ] [ r + v i ] − w i , f [ i − 1 ] [ r ] } + 2 w i . . . f[i][r]=f[i-1][r] \\f[i][r+v_i]=\max\{f[i-1][r+v_i]-w_i,f[i-1][r]\}+w_i, \\f[i][r+2v_i]=\max\{f[i-1][r+2v_i]-2w_i,f[i-1][r+v_i]-w_i,f[i-1][r]\}+2w_i\\... f[i][r]=f[i1][r]f[i][r+vi]=max{f[i1][r+vi]wi,f[i1][r]}+wi,f[i][r+2vi]=max{f[i1][r+2vi]2wi,f[i1][r+vi]wi,f[i1][r]}+2wi...这样,队列里只需要存形如 f [ i − 1 ] [ r + l v i ] − l v i , 0 ≤ l ≤ s i f[i-1][r+lv_i]-lv_i,0\le l\le s_i f[i1][r+lvi]lvi,0lsi这样的值就行了,这些值是个长最多 s i s_i si的滑动窗口,而滑动窗口求最值是有一个很好的解决方案的,就是用单调队列(事实上队列里存的是滑动窗口里的诸 r + l v i r+lv_i r+lvi,否则的话无法知道队头是不是要出队),参考https://blog.csdn.net/qq_46105170/article/details/113801601。代码如下:

#include <iostream>
using namespace std;

const int N = 1010, M = 20010;
// 分别存物品种类数和背包总容量
int n, m;
// 分别是体积、价值和个数
int v[N], w[N], s[N];
int f[N][M];
// 要手动开个队列,用STL的队列会有超时风险。这里的队列里只存f的第二维,
// 但是对于单调队列的单调性,则要把k个物品i的价值k * w[i]加到后面去
int q[M];

int main() {
  scanf("%d%d", &n, &m);
  for (int i = 1; i <= n; i++) 
    // v体积,w价值,s个数
	cin >> v[i] >> w[i] >> s[i];

  for (int i = 1; i <= n; i++)
  	// 枚举模v[i]的余数
    for (int j = 0; j < v[i]; j++) {
   	  // 初始化队列
      int hh = 0, tt = 0;
      // 枚举模v[i]等于j的所有体积
      for (int k = j; k <= m; k += v[i]) {  
    	// 枚举不取第i个物品的情况
        f[i][k] = f[i - 1][k];
        
        // 出了窗口的就出队(其实就是被个数s[i]限制了)  
        if (hh < tt && q[hh] < k - s[i] * v[i]) hh++;	
		// 维护队列的单调下降性
        while (hh < tt && f[i - 1][q[tt - 1]] - q[tt - 1] / v[i] * w[i] <= f[i - 1][k] - k / v[i] * w[i])
          tt--; 
		// 把当前体积入队
        q[tt++] = k;
        // 那么队头就存了最优的第i个物品的选取个数所代表的那个“j”(这个j不是代码里的j,而是上面的分析里的f的第二维)
        f[i][k] = f[i - 1][q[hh]] + (k - q[hh]) / v[i] * w[i];
      }
    }

  printf("%d\n", f[n][m]);
}

时空复杂度 O ( N V ) O(NV) O(NV)

可以考虑空间优化,用滚动数组:

#include <iostream>
using namespace std;

const int N = 1010, M = 20010;
int n, m;
int f[2][M];
int q[M];

int main() {
  scanf("%d%d", &n, &m);

  for (int i = 1; i <= n; i++) {
    // v体积,w价值,s个数
    int v, w, s;
    scanf("%d%d%d", &v, &w, &s);

    for (int j = 0; j < v; j++) {
      int hh = 0, tt = 0;
      for (int k = j; k <= m; k += v) {
        if (hh < tt && q[hh] < k - s * v) hh++;
        while (hh < tt && f[i - 1 & 1][q[tt - 1]] - q[tt - 1] / v * w <=
                              f[i - 1 & 1][k] - k / v * w)
          tt--;

        q[tt++] = k;
        f[i & 1][k] = f[i - 1 & 1][q[hh]] + (k - q[hh]) / v * w;
      }
    }
  }
  printf("%d\n", f[n & 1][m]);
}

时间复杂度不变,空间 O ( V ) O(V) O(V)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值