2019.7.15

1.轮廓系数(Silhouette Coefficient):

       是聚类结果好坏的一种评价方式,结合了内聚度和分离度两种因素。可以用来在相同原始数据的基础上用来评价不同算法、或者算法不同运行方式对聚类结果所产生的影响。

       计算过程:假设我们已经通过一定算法,将待分类数据进行了聚类。常用的比如使用K-means,将待分类数据分为了 k 个簇 。对于簇中的每个向量。分别计算它们的轮廓系数。

       对于其中的一个点 i 来说:

       计算 a(i) = average(i向量到所有它属于的簇中其它点的距离)   即i向量到同一簇内其他点不相似程度的平均值

       计算 b(i) = min (i向量到与它相邻最近的一簇内的所有点的平均距离)   即i向量到其他簇的平均不相似程度的最小值

       那么 i 向量轮廓系数就为:

                                               

       可见轮廓系数的值是介于 [-1,1] ,越趋近于1代表内聚度和分离度都相对较优。将所有点的轮廓系数求平均,就是该聚类结果总的轮廓系数。

 

2.Voronoi图:

        Voronoi图,又叫泰森多边形或Dirichlet图,它是由一组由连接两邻点直线的垂直平分线组成的连续多边形组成。N个在平面上有区别的点,按照最邻近原则划分平面;每个点与它的最近邻区域相关联。Delaunay三角形是由与相邻Voronoi多边形共享一条边的相关点连接而成的三角形。Delaunay三角形的外接圆圆心是与三角形相关的Voronoi多边形的一个顶点。

发布了3 篇原创文章 · 获赞 0 · 访问量 189

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览