2019.8.2

相对熵

       相对熵(relative entropy),又被称为Kullback-Leibler散度(Kullback-Leibler divergence)或信息散度(information divergence),是两个概率分布(probability distribution)间差异的非对称性度量。在信息理论中,相对熵等价于两个概率分布的信息熵(Shannon entropy)的差值。

       相对熵是一些优化算法,例如最大期望算法(Expectation-Maximization algorithm, EM)的损失函数。此时参与计算的一个概率分布为真实分布,另一个为理论(拟合)分布,相对熵表示使用理论分布拟合真实分布时产生的信息损耗。

 

发布了3 篇原创文章 · 获赞 0 · 访问量 184

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览