2019.7.17

独立随机变量:如果它们的联合分布函数等于各个变量的分布函数的乘积,则随机变量X,…,Y为相互独立的。

联合分布函数:设(X,Y)是二维随机变量,对于任意实数x,y,二元函数:F(x,y) = P{(X<=x) 交 (Y<=y)} => P(X<=x, Y<=y),称为:二维随机变量(X,Y)的分布函数,或称为随机变量X和Y的联合分布函数。

移动平均法(Moving Average):移动平均法是一种简单平滑预测技术,它的基本思想是:根据时间序列资料、逐项推移,依次计算包含一定项数的时序平均值,以反映长期趋势的方法。因此,当时间序列的数值由于受周期变动和随机波动的影响,起伏较大,不易显示出事件的发展趋势时,使用移动平均法可以消除这些因素的影响,显示出事件的发展方向与趋势(即趋势线),然后依趋势线分析预测序列的长期趋势。移动平均法根据预测时使用的各元素的权重不同,可以分为:简单移动平均和加权移动平均。

不确定性数据:不确定性数据的产生原因比较复杂。可能是原始数据本来就不准确或是采用了粗粒度的数据集合,也可能是原始数据是为了满足特殊应用目的或是经过处理缺失值或者数据集成而生成的。

随机梯度下降法

def fit(self, X_train, y_train):
        is_wrong = False
        while not is_wrong:
            wrong_count = 0
            for d in range(len(X_train)):
                X = X_train[d]
                y = y_train[d]
                if y * self.sign(X, self.w, self.b) <= 0:
                    self.w = self.w + self.l_rate * np.dot(y, X)
                    self.b = self.b + self.l_rate * y
                    wrong_count += 1
            if wrong_count == 0:
                is_wrong = True
        return 'Perceptron Model!'
发布了3 篇原创文章 · 获赞 0 · 访问量 189

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览