2019.7.29

MUNICH、PROUD和DUST三种方法的对比

1.不确定性模型和假设 

       我们所审查的所有三种技术都是基于这样的假设:时间序列的值是相互独立的。也就是说,假设每个时间戳的值是独立于给定分布的。显然,这是一个简化的假设,因为时间序列中的相邻值通常具有很强的时间相关性。

       MUNICH与其他两种技术的主要区别在于,MUNICH通过记录每个时间戳的多次观测来表示时间序列值的不确定性。这可能是 认为样本是从值误差的分布来看的。相反,PROUD和DUST认为每个时间序列的值都是一个连续的随机变量,遵循一定的概率分布。

       初步信息的数量,即对时间序列值的特征及其误差的先验知识,在不同的技术之间差异很大。MUNICH不需要知道时间序列值的分布,或值误差的分布。它只是根据每个时间戳上的观测结果进行操作。

       另一方面,PROUD和DUST需要知道数据流的每个值处的误差分布。特别是,PROUD要求知道不确定度误差的标准差,并为每个时间戳加上一个单独的观察值。PROUD假设,在所有时间戳中,不确定误差的标准差保持不变。

       在这三种技术中,DUST使用的信息量最大。它以每个时间戳的时间序列的单个观测值作为输入,就像PROUD一样。此外,DUST需要知道,不确定度误差在每个时间戳上的分布,以及时间序列值的分布。这意味着,相对于PROUD,DUST可以考虑不确定误差的混合分布。

2.距离度量的类型

       所有考虑的技术都使用了欧氏距离的一些变化。MUNICH和PROUD以一种非常直截了当的方式使用这种距离。此外,MUNICH和DUST可以用来计算DTW距离,是一种更灵活的距离度量。

       DUST是一种新型的距离,专为不确定的时间序列而设计。换句话说,DUST本身不是一种相似性匹配技术,而是一种新的距离度量。在数值误差正态分布的情况下,尘埃与欧氏距离成正比。此外,如果所有的值误差都服从同一个分布,则采用欧氏距离比较好。当数值误差用多个误差分布建模时,DUST就会变得有用。

3.相似性查询的类型

       MUNICH和PROUD是为回答概率范围查询而设计的。DUST是一种距离度量,可用于回答top-k最近邻查询,或执行top-k主题搜索。MUNICH和PROUD解决了相似性匹配问题,得到了一组具有一定概率的属于答案的时间序列,即τ。另一方面, DUST产生的单个值是两个不确定时间序列之间的精确(非概率)距离。

 

发布了3 篇原创文章 · 获赞 0 · 访问量 185

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览