常见的代价函数

本文介绍了两种常见的代价函数:二次代价函数(均方误差)和交叉熵代价函数。二次代价函数适用于线性输出,而交叉熵代价函数更适合S型函数。在TensorFlow中,可以使用tf.nn.sigmoid_cross_entropy_with_logits和tf.nn.softmax_cross_entropy_with_logits来实现对应的交叉熵计算。
摘要由CSDN通过智能技术生成

1. .二次代价函数(quadratic cost) 均方误差

代价函数 =   (实际值-输出值)的平方/2n

m:训练样本的个数;

hθ(x):用参数θ和x预测出来的y值;

y:原训练样本中的y值,也就是标准答案

上角标(i):第i个样本

 

2.交叉熵代价函数(cross-entropy)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

贾世林jiashilin

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值