支持向量机的特点,优点缺点

支持向量机(SVM)是一种高效的小样本学习方法,其核心是通过最大化分类边界找到最优超平面。SVM依赖于内积核函数,避免了维数灾难,并具有良好的鲁棒性和泛化能力。然而,它在处理大规模样本、多分类问题以及核函数选择上存在挑战,如训练时间长、参数敏感等。
摘要由CSDN通过智能技术生成

 

特点 :

  1. 支持向量是SVM的训练结果,在SVM分类决策中起决定作用的是支持向量。
  2. SVM的目标是对特征空间划分得到最优超平面,SVM方法核心是最大化分类边界。
  3. SVM方法的理论基础是非线性映射,SVM利用内积核函数代替向高维空间的非线性映射。
  4. SVM是一种有坚实理论基础的新颖的适用小样本学习方法。它基本上不涉及概率测度及大数定律等,也简化了通常的分类和回归等问题。
  5. SVM的最终决策函数只由少数的支持向量所确定,计算的复杂性取决于支持向量的数目,而不是样本空间的维数,这在某种意义上避免了“维数灾难”。
  6. 少数支持向量决定了最终结果,这不但可以帮助我们抓住关键样本、“剔除”大量冗余样本,而且注定了该方法不但算法简单,而且具有较好的“鲁棒性”。这种鲁棒性主要体现在: ​ ①增、删非支持向量样本对模型没有影响;②支持向量样本集具有一定的鲁棒性;③有些成功的应用中,SVM方法对核的选取不敏感
  7.  SVM学习问题可以表示为凸优化问题,因此可以利用已知的有效算法发现目标函数的全局最小值。而其他分类方法(如基于规则的分类器和人工神经网络)都采用一种基于贪心学习的策略来搜索假设空间,这种方法一般只能获得局部最优解
  8. SVM通过最大化决策边界的边缘来控制模型的能力。尽管如此,用户必须提供其他参数,如使用核函数类型和引入松弛变量等。
  9. SVM在小样本训练集上能够得到比其它算法好很多的结
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

贾世林jiashilin

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值