图和最短路径的题目常常伴随着dfs,bfs的搜索方法进行。
图的题目,很大程度为求对应的图的连通分量
DFS深度优先搜索:
void dfs()//参数用来表示状态
{
if(到达终点状态)
{
...//根据题意来添加
return;
}
if(越界或者是不符合法状态)
return;
for(扩展方式)
{
if(扩展方式所达到状态合法)
{
....//根据题意来添加
标记;
dfs();
修改(剪枝);
(还原标记);
//是否还原标记根据题意
//如果加上(还原标记)就是 回溯法
}
}
}
- 在进行dfs时,传入的参数尽量为int形等变量(当传入struct等类型,容易产生段错误,可以通过传入结构体对应的索引来进行解决。)
BFS
需要使用队列进行相应的操作,在求层序遍历时用处更大。
tips:强连通分量的dfs题目
1013 Battle Over Cities (25分)
#include<algorithm>
#include<cstdio>
#include<iostream>
#include<vector>
#include<cstring>
#include<cmath>
using namespace std;
int n,m,k,occu;
int e[1010][1010];
bool visit[1010];
void dfs(int index)
{
visit[index]=true;
for(int i=1;i<=n;i++)
if(visit[i]==false && e[index][i]==1)
dfs(i);
}
int main()
{
int a,b,num;
scanf("%d%d%d", &n, &m, &k);
for(int i=0;i<m;i++)
{
scanf("%d %d",&a, &b);
e[a][b]= e[b][a]=1;
}
for(int j=0;j<k;j++)
{
fill(visit, visit+1010, false);
num=0;
scanf("%d", &occu);
visit[occu]=true;
for(int i=1;i<=n;i++)
if(visit[i]==false)
{
dfs(i);
num++;
}
printf("%d\n", num-1);
}
return 0;
}
1091. Acute Stroke 图的三维DFS
技巧:将三个方向上的位移用dx,dy,dz三个数组表示
int dx[6] = {1,-1,0,0,0,0};
int dy[6] = {0,0,1,-1,0,0};
int dz[6] = {0,0,0,0,1,-1};
这样在求解连通的方块的时候可以使用一个for循环解决
#include<iostream>
#include<cstdio>
#include<vector>
#include<algorithm>
#include<queue>
using namespace std;
int m,n,l,t;
int a[1287][130][61];
bool visit[1287][130][61];
struct node
{
int x,y,z;
};
int dx[6] = {1,-1,0,0,0,0};
int dy[6] = {0,0,1,-1,0,0};
int dz[6] = {0,0,0,0,1,-1};
int dfs(int x,int y,int z)
{
int score=0;
queue<node> st;
visit[x][y][z]=true;
st.push({x,y,z});
while(!st.empty())
{
node nod = st.front();
score++;
st.pop();
for(int i=0;i<6;i++)
{
int tx=nod.x+dx[i];
int ty=nod.y+dy[i];
int tz=nod.z+dz[i];
if(tx<m&&ty<n&&tz<l&&tx>=0&&ty>=0&&tz>=0)
if(visit[tx][ty][tz]==false&& a[tx][ty][tz]==1)
{
st.push({tx,ty,tz}); visit[tx][ty][tz]=true;
}
}
}
if(score>=t) return score;
else return 0;
}
int main()
{
scanf("%d %d %d %d",&m, &n, &l, &t);
for(int i=0;i<l;i++)
for(int k=0;k<m;k++)
for(int j=0;j<n;j++)
scanf("%d", &a[k][j][i]);
int ant=0;
for(int i=0;i<l;i++)
for(int k=0;k<m;k++)
for(int j=0;j<n;j++)
if(visit[k][j][i]==false&& a[k][j][i]==1)
{
ant+=dfs(k,j,i);
}
cout<<ant<<endl;
return 0;
}
1103 Integer Factorization
这里有个思想:穷举法暴力模拟,为了避免超时,一般都把待选数放到一个数组里,而不是每次重新计算。
这个题用搜素也是我没想到的,原来以为要用暴力,感觉是个数学题的缘故,以为要用什么巧…