【深度学习基础】准确率(Accuracy), 精确率(Precision), 召回率(Recall)和F1-Measure

深度学习基础:

  1. 性能评估指标
  2. 超参数介绍

在这里插入图片描述
这里主要解释的是前四个

先给出百度百科定义

召回率(Recall Rate,也叫查全率)是检索出的相关文档数文档库中所有的相关文档数的比率,衡量的是检索系统的查全率;
精度是检索出的相关文档数检索出的文档总数的比率,衡量的是检索系统的查准率。

召回率(Recall)和精度(Precise)是广泛用于信息检索和统计学分类领域的两个度量值,用来评价结果的质量。
F-measure应该是精准率和召回率之间的一个平衡点

举例来说:

一个数据库有500个文档,其中有50个文档符合定义。系统检索到75个文档,但是实际只有45个符合定义。则:

在做出解答前,我们要先了解一些概念:
对于数据测试结果有下面4种情况:
TP: 预测为正,实际为正
FP: 预测为正,实际为负

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值