lightgbm 之metric参数应用

在xgboost里面讲过了就不仔细讲解了,链接如下:https://blog.csdn.net/qq_35307209/article/details/89914785
'metric': {'binary_logloss', 'l2', 'auc'},
train=lgb.Dataset(train_x,train_y, free_raw_data=False)
eval = lgb.Dataset(valid_x, valid_y, free_raw_data=False)
model = lgb.train(params,  # 参数字典
                  train,  # 训练集
                  num_boost_round=200,  # 迭代次数
                  valid_sets=[eval, train])  
LightGBM可以用于二分类问题,预测两类的方法如下所示: 1. 数据准备:首先需要准备好训练集和测试集的数据。将样本数据进行特征工程和预处理,确保数据的格式和特征符合模型的要求。 2. 模型选择与参数调整:选择LightGBM作为分类模型,并根据具体情况调整相关参数。在这个例子中,可以使用LGBMClassifier来进行分类。可以根据具体需求进行参数调整,如boosting_type(提升类型)、n_estimators(基学习器的个数)、max_depth(树的最大深度)等等。 3. 模型训练:使用训练集对模型进行训练。将准备好的训练数据(X_train)和对应的标签(y_train)输入模型,使用fit函数进行训练。 4. 模型预测:使用训练好的模型对测试集进行预测。将准备好的测试数据(X_test)输入模型,使用predict函数进行预测。预测结果可以是概率值或者类别标签。 举例来说,可以使用以下代码进行LightGBM的二分类预测: ```python import lightgbm as lgb from sklearn.model_selection import train_test_split # 准备训练集和测试集数据 X_train, X_test, y_train, y_test = train_test_split(features, labels, test_size=0.2, random_state=42) # 定义模型 lgb_model = lgb.LGBMClassifier(boosting_type='gbdt', metric='binary_logloss', n_estimators=100, max_depth=3) # 训练模型 lgb_model.fit(X_train, y_train) # 预测结果 y_pred = lgb_model.predict(X_test) ``` 在这个例子中,我们使用LightGBMLGBMClassifier类作为分类器,设定了boosting_type为gbdt,使用binary_logloss作为评估指标,设置了n_estimators为100,max_depth为3。训练模型后,可以使用predict函数对测试数据进行预测,得到预测结果y_pred。 请注意,以上只是一个示例,具体的参数和数据处理方法需要根据实际情况进行调整和优化。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [机器学习应用篇(七)——基于LightGBM的分类预测](https://blog.csdn.net/qq_43368987/article/details/122423766)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *3* [利用LightGBM实现天气变化的时间序列预测](https://blog.csdn.net/m0_47256162/article/details/128054912)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值