### 隐语义 LFM 模型 Python 代码实现
隐语义模型(Latent Factor Model, LFM)通过引入潜在因子来表示用户和物品之间的关系,从而能够更好地捕捉数据中的隐藏模式。下面是一个基于矩阵分解方法的简单隐语义模型实现。
#### 数据准备
为了训练LFM模型,通常需要一个评分矩阵作为输入。这里假设有一个简单的用户-项目评分表:
```python
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
ratings = {
'Alice': {'Item1': 5, 'Item2': 3},
'Bob': {'Item1': 4, 'Item3': 2},
'Charlie': {'Item2': 1, 'Item3': 5}
}
# 将字典转换成稀疏矩阵形式
users = list(ratings.keys())
items = set()
for user in ratings.values():
items.update(user.keys())
n_users = len(users)
n_items = len(items)
item_indices = {item: i for i, item in enumerate(sorted(items))}
user_indices = {user: i for i, user in enumerate(users)}
rating_matrix = np.zeros((n_users, n_items))
for user, scores in ratings.items():
uid = user_indices[user]
for item, score in scores.items():
rating_matrix[uid][item_indices[item]] = score
```
#### 训练LFM模型
接下来定义并训练LFM模型函数,该过程涉及初始化随机权重向量P和Q,并利用梯度下降法更新这些参数直到收敛为止。
```python
def lfm_train(R, K=2, steps=5000, alpha=0.0002, beta=0.02):
"""
使用显式反馈的数据集训练LFM模型
参数:
R -- 用户-项目的评分矩阵 (m x n), m代表用户的数量,n代表商品的数量.
K -- 主成分个数(即隐含特征维度).
steps -- 迭代次数.
alpha -- 学习速率.
beta -- 正则项系数.
返回值:
P,Q -- 分解后的两个低秩矩阵(m×K 和 K×n),它们相乘可以近似原始R矩阵.
"""
N = len(R) # Number of users
M = len(R[0]) # Number of movies/items
P = np.random.rand(N,K)
Q = np.random.rand(M,K)
for step in range(steps):
eij_sum_square_error = 0
for u in range(len(R)):
for i in range(len(R[u])):
if R[u][i]>0:
eui=R[u][i]-np.dot(P[u,:],Q[i,:].T)
for k in range(K):
P[u][k]=P[u][k]+alpha*(eui*Q[i][k]-beta*P[u][k])
Q[i][k]=Q[i][k]+alpha*(eui*P[u][k]-beta*Q[i][k])
eij_sum_square_error += pow(eui, 2)
if eij_sum_square_error<0.001:
break
return P, Q.T
```
此部分实现了基本版的LFM算法,在实际应用中可能还需要考虑更多因素如偏置项、时间衰减效应等以提高预测精度[^3]。
#### 应用LFM进行推荐
一旦获得了P和Q这两个矩阵之后就可以用来做个性化推荐了:
```python
P, Qt = lfm_train(rating_matrix)
predicted_ratings = np.dot(P,Qt)
print("Predicted Ratings:\n", predicted_ratings)
```
上述代码展示了如何构建一个基础版本的隐语义模型以及怎样运用它来进行电影或其他产品的推荐服务。当然这只是一个非常简化例子,在真实场景下还需加入更多的优化措施和技术细节处理。