ADNI数据集

本文详细介绍了轻度认知障碍(MCI)的不同阶段,包括早期(EMCI)和晚期(LMCI),以及与阿尔兹海默症(AD)的关系。探讨了这些疾病的概念及其进展。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
MCI:mild cognitive impairment 轻度认知障碍
EMCI : early mild cognitive impairment 早期轻度认知障碍
LMCI : late mild cognitive impairment 晚期轻度认知障碍
AD:Alzheimer‘s disease 阿尔兹海默症
SMC:
CN:

在这里插入图片描述

### 关于ADNI数据集中MCI轻度认知障碍的研究方法 #### 获取和下载ADNI数据集的方法 为了访问ADNI数据库并获取关于MCI的数据,研究人员通常需要注册账号并通过官方网站申请权限。一旦获得批准,可以浏览不同类型的影像学资料和其他临床评估记录来筛选符合条件的对象群体。 对于具体到MCI类别的样本,在`DocumentSummary.csv`文件中有详细的诊断转换信息[^3]。例如,通过查看DXCHANGE字段的不同取值能够区分稳定不变或是发生转变的情况下的受试者情况: - `2`: 表明该对象处于稳定的轻度认知损伤阶段; - `4`, `5`, 和其他涉及向更严重状况发展的编号则可用于分析疾病进展模式。 #### 研究中使用的常见技术手段 针对MCI特别是其细分领域如EMCI(早期)与LMCI(晚期),常用的技术包括但不限于神经成像技术和生物标志物检测。这些工具帮助识别大脑结构变化趋势及功能异常特征,从而更好地理解病理机制和发展轨迹[^1]。 此外,机器学习算法也被广泛应用于此类研究当中。比如利用支持向量机(SVM)或其他分类器对来自EEG信号或结构性磁共振图像(sMRI)的信息进行处理,进而实现对健康对照组(HC), 阿茨海默病(AD) 及不同类型MCI之间的有效鉴别[^4]。 ```python import pandas as pd # 假设已经加载了必要的CSV文件 df = pd.read_csv('path_to_adni_data/DocumentSummary.csv') # 过滤出所有被标记为任何形式的MCI患者 mci_patients = df[df['DXCHANGE'].isin([2, 4, 5])] print(f"Total number of MCI patients: {len(mci_patients)}") ```
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值