实训第四周周志

作者分享一周学习成果,包括了解卷积神经网络等多种神经网络模型,体验YOLO训练、定制数据集训练及封装推理模型,学会使用ftp/sftp向服务器上传文件,掌握远程终端操作、vi文本编辑器使用,还涉及yolo训练、测试验证及数据集工程相关内容。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

通过这一周的学习,我学会了以下几点:

1. 了解了一下神经网络模型

      01. 卷积神经网络:手写数字识别

     

      02. Lenet-5

      03. AlexNet

      04. ResNet

      05. GoogLeNet

      06. EfficentNet

      07. MobileNet

2. 体验了YOLO训练

      01. models.py

      02. utils

      03. cfg/yolov4_tiny.cfg

      04. datasets:制作自己的数据集工程

            安装:精灵标注助手

           

      05. weights/yolov4-tiny.pt 初始化权重

      06. 训练:

            train.py

            run_train.bat

     

      07. 测试与验证

            test.py

            run_test.bat

     

      08. 侦测效果

            detect.py

            run_detect.bat

     

2. 定制数据集训练

3. 封装推理模型

      训练两个模型:人脸登录/业务AI模型

4. 学会了向服务器上传文件

      ftp/sftp

      01. 登录/登出到服务器

            sftp 用户@ip

            bye/exit/quit

      02. 服务器文件的操作

            cd

            pwd

            mkdir

            rmdir

            rm

            rename

            chmod

            chown

            ln -s = symlink

            ls

      03. 本地文件的操作

            !本地命令

            lcd

            lmkdir

      04. 文件上传/下载

            put

            get

5. 远程终端

      01. 登录/登出

            ssh 用户@ip

      02. Linux的文件系统

            cd

            ls

            mkdir

            rmdir

            rm

            mv

            chmod

            chown

     

6. vi

      文本编辑器(最强大的文本编辑器)

7. yolo的训练

      续行符  ^ 去掉,换行去掉

      python3  python 3.6

      python   python 2.7

8. 测试/验证

9. 数据集工程

      01. 准备图像数据集

      02. 安装标注工具:精灵标注助手

      03. 标注图像

              ctrl + s

              ->   <-

      04. 格式转换

            YOLO的标签格式:YOLO_mark

            类别id cx, cy, w, h

            0  10,10200200    

      05. 创建数据集工程

     

      06. 图像管理

      07. 标签管理

      08. 训练与测试数据集列表

            train.txt  (建议写一个程序生成列表)

      09. 类别列表

            faces.names

      10. 数据集工程配置

            faces.data

      11. 修改模型

            filters=255 (5 + 类别数) * 3

            classes=80

      12. 在run_train.bat/run_test.py修改数据集的配置

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

SuasyYi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值