通过这一周的学习,我学会了以下几点:
1. 了解了一下神经网络模型
01. 卷积神经网络:手写数字识别
02. Lenet-5
03. AlexNet
04. ResNet
05. GoogLeNet
06. EfficentNet
07. MobileNet
2. 体验了YOLO训练
01. models.py
02. utils
03. cfg/yolov4_tiny.cfg
04. datasets:制作自己的数据集工程
安装:精灵标注助手
05. weights/yolov4-tiny.pt 初始化权重
06. 训练:
train.py
run_train.bat
07. 测试与验证
test.py
run_test.bat
08. 侦测效果
detect.py
run_detect.bat
2. 定制数据集训练
3. 封装推理模型
训练两个模型:人脸登录/业务AI模型
4. 学会了向服务器上传文件
ftp/sftp
01. 登录/登出到服务器
sftp 用户@ip
bye/exit/quit
02. 服务器文件的操作
cd
pwd
mkdir
rmdir
rm
rename
chmod
chown
ln -s = symlink
ls
03. 本地文件的操作
!本地命令
lcd
lmkdir
04. 文件上传/下载
put
get
5. 远程终端
01. 登录/登出
ssh 用户@ip
02. Linux的文件系统
cd
ls
mkdir
rmdir
rm
mv
chmod
chown
6. vi
文本编辑器(最强大的文本编辑器)
7. yolo的训练
续行符 ^ 去掉,换行去掉
python3 python 3.6
python python 2.7
8. 测试/验证
9. 数据集工程
01. 准备图像数据集
02. 安装标注工具:精灵标注助手
03. 标注图像
ctrl + s
-> <-
04. 格式转换
YOLO的标签格式:YOLO_mark
类别id cx, cy, w, h
0 10,10,200,200
05. 创建数据集工程
06. 图像管理
07. 标签管理
08. 训练与测试数据集列表
train.txt (建议写一个程序生成列表)
09. 类别列表
faces.names
10. 数据集工程配置
faces.data
11. 修改模型
filters=255 (5 + 类别数) * 3
classes=80
12. 在run_train.bat/run_test.py修改数据集的配置