- 博客(17)
- 收藏
- 关注
原创 1 人工神经网络(合并版)
我们的大脑中含有大量神经元,这些神经元相互连接,促进我们日常的思考、阅读、沟通交流等活动。大脑的神经元活动赋予了人类智能,为模仿这种能力,科学家模拟了生物神经元功能,建立了人工神经元模型,并形成了人工神经网络。
2024-10-11 18:18:44 565
原创 02 人工神经元模型
树突、细胞体、轴突和突触的功能可总结如下:树突:接收多个外界信号,对不同信号进行放大或缩小;细胞体:对接收的外界信号进行综合处理;轴突:是将细胞体处理后的信号传递到其他神经元;突触:控制经轴突传递至其他神经元的信号强弱。基于这些功能,可建立人工神经元模型。
2024-10-09 12:00:00 239
原创 01. 生物神经元启发
我们的大脑中含有大量神经元,这些神经元相互连接,促进我们日常的思考、阅读、沟通交流等活动。在我们出生时,一些神经元连接就已经存在了。随着人的不断成长,大脑中的神经元间会建立一些新的连接,同时也会弱化一些旧的连接,这个过程即学习和遗忘。神经元的连接令大脑具备了智能,不同的连接形式形成了不同的智能能力,这些连接结构被称为神经网络。
2024-10-08 16:05:53 254
原创 python绘图报错
ValueError: 'color' kwarg must be a color or sequence of color specs. For a sequence of values to b
2022-08-26 09:25:24 2394 1
原创 wxPython绘图
import wxclass DrawFrame(wx.Window): def __init__(self,parent,ID): wx.Window.__init__(self,parent,ID) self.Bind(wx.EVT_LEFT_DOWN,self.OnLeftDown) self.Bind(wx.EVT_LEFT_UP,self.OnLeftUp) self.Bind(wx.EVT_MOTION.
2022-01-03 16:58:09 708
原创 matplotlib.pyplot 绘制图中图
效果如下:引入需要的模块:import matplotlib.pyplot as pltfrom mpl_toolkits.axes_grid1.inset_locator import inset_axesimport numpy as npimport math生成仿真数据:def generate(): x0,y0,y1=[],[],[] for i in np.arange(0,10,0.01): x0.append(i) .
2021-10-26 09:31:22 505
原创 神经网络(pytorch框架)回归预测
使用神经网络做回归预测。最终效果如下:引入需要的模块:import mathimport matplotlib.pyplot as pltimport numpy as npimport torchfrom torch import nn生成仿真数据:def generate_data(): y=[] x=[] for i in np.arange(0,5,0.1): x.append(i) y.append(math.
2021-10-25 09:31:23 9510 1
原创 归一化数据值到指定区间
数据归一化到指定区间,python代码如下:import numpy as npdef normalize(x,a,b): max_x=max(x) min_x=min(x) return (x-min_x)/(max_x-min_x)*(b-a)if __name__=='__main__': x=[1,2,1,1.5,3] x=np.array(x) normalize_x=normalize(x,0.1,0.5) print('x:',
2021-08-27 18:42:27 851
原创 拒绝采样(Rejection sampling)
已知分布,如何从该分布中采样样本呢?今天介绍一种称为拒绝采样的方法。具体如下:假设已知一个容易采样的候选分布,和之间满足:,为某一个常数,上式的意思即选择一个候选分布和某一常数,使得包含。接下来,拒绝采样的步骤可以总结如下:1. 确定需采样的样本个数N;2. 从候选分布中采样样本;3. 从均匀分布中采样系数;4. 计算,若,则接受当前采样样本,否则,拒绝该次采样;5. 重复步骤2-...
2021-08-24 19:28:35 3889
原创 SGD中的自适应采样法总结
1. 有放回均匀采样(SGD uniform),样本采样概率为: (1)式中,|D|为数据集大小。为采样第i个样本的概率。2. 不放回采样(SGD scan) ...
2021-05-26 16:16:21 1429
原创 线性规划求解之罚函数法(外点法)
罚函数法又称外点法,其基本思想为将违背约束作为求最小值的一种惩罚,将约束带入目标函数得到一个辅助的无约束最优化问题。利用已有的无约束最优化方法求解。考虑如下约束优化问题:minf(x)s.t.gi(x)≥0(i=1,..,m)hj(x)=0(j=1,...l)minf(x)\\s.t. g_i(x) \geq 0 (i=1,..,m)\\ h_j(x)=0 (j=1,...l)\\minf(x)s.t.gi(x)≥0(i=1,..,m)hj(x)=0(j=1,...l)构造如
2021-04-26 16:10:24 7205
原创 SGD中的自适应采样法
SGD中的自适应采样法SGD是一种广泛使用的优化算法,在其优化过程中,更新规则如下:dt=∇f(it,θt−1),θt=θt−1−γtdtd^t=\nabla f(i^t,\theta^{t-1}),\\\theta^t=\theta^{t-1} -\gamma ^t d^tdt=∇f(it,θt−1),θt=θt−1−γtdt其中,dtd^tdt为输入样本iti^tit时,性能函数fff对参数θt−1\theta^{t-1}θt−1的导数,即梯度。可见,在SGD更新过程中,需要随机选择一个样
2021-04-14 21:45:17 1072
原创 Deep SVDD
SVDD的基本原理是建立一个超球体去尽可能地包含所有数据,当数据在超球体外就将其作为异常点。如图1所示: 图1 SVDD原理示意图在SVDD的原理(具体可参考上一篇博客)中,其优化过程如下: ...
2021-04-03 11:40:16 4850 1
原创 SVDD基本原理
支持向量数据表达/描述(SVDD;Support Vector Data Description)是一种适用于只有一类数据的分类方法。可能你会说,开什么玩笑?一类数据分个什么类?其实,这是一种很常见的应用场景。如机器故障诊断,很多时候,我们能够采集到的正常情况下机器的运行数据,而我们的一个想法是利用这些正常的数据判断机器是否发生故障。因此,对于这个问题,根据不同的应用场景其实还有另外的一些称呼:如异常检测,开集识别,孤立点检测等等。详细的一些介绍可以参考文献[1]的介绍。这里,我们聚焦于
2021-03-27 17:19:57 14133 3
原创 牛顿法
牛顿法是一种因寻找一元函数的根(函数值为0时,自变量的取值)而广为人知的优化法;定义函数:,考虑等式:,通过线性近似可获得牛顿法的更新规则。假设已知靠近最优解,在处对函数做一阶泰勒展开有:,则可近似为:。在某些条件下,若将视作最优的近似,则有:, (1)式(1)即为牛顿法的更新规则,该方案可进一步扩展,定...
2021-03-24 21:37:11 748
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人