快来免费用20小时1080TI/2080GPU!iDeepMind中文社区推出GPU租用出租业务

www.deepmind.ink
工欲善其事必先利其器,DeepMind中文社区响应同学们的号召,试运营了GPU服务器平台:www.deepmind.ink,主打低价格和简易操作。1080ti低至七毛人民币一小时!!!(话说现在去个网吧还5块下不来呢)
首先下表列出了我们和其他主流平台的价格对比

各平台GPu价格对比

可见我们的平台的价格是很具吸引力的。等等,还有更重磅的消息!!!现在我们平台推出了试用活动,注册账号进qq群:954281640即可获得至少20小时的1080TI级别算力!!!

下面是零基础deepmind中文社区gpu教程,真的零基础(文末还有书籍软件免费送大家记得点赞加群呀)!!!

首先打开网页:www.deepmind.ink,点击“开始租用 GPU”:
在这里插入图片描述
然后在“我的钱包”里面“创建钱包账号”:

在新的钱包里设置密码,点击“创建”。
在这里插入图片描述
下载私钥文件并保存私钥码 私钥文件和私钥码都是用户身份证,请注意保存备份,防止泄露( 私钥码已经注册下载,无法找回,请务必妥善保管)。创建钱包完成之后,就可以使用私钥打开自己的钱包了!

在这里插入图片描述
2. 激活账户
第一次使用,需要充值1毛钱来激活账户,首先,在我的钱包里点击“如何购买 DBC”。

在这里插入图片描述
然后选择一种购买方式,例如我选择支付宝“直接购买DBC”。

在这里插入图片描述
接着输入购买金额,例如我想买 1 元,可以看到等值约 200 DBC。

在这里插入图片描述
最后,点击继续,选择支付方式。可以直接使用支付宝支付,非常方便!
3. 绑定邮箱
第一次使用,在“我的机器”里,点击“绑定邮箱”,

在这里插入图片描述
绑定邮箱是用于接收租用机器的相关信息,包括登录账号和密码,都会以邮件的形式发送给你。注意每次租用需要有一定的DBC余额用于验证(大约 0.5 DBC)。

4. 开始试用GPU!!!!
加入qq群:954281640,在群文件:服务器—Xshell中下载xshell并安装。
打开deepmind中文社区gpu网站并登陆自己的账号,点击机器列表,选择一个gpu进行租用(更推荐随便选择一个点击试用按钮哦)

在这里插入图片描述
按需填写下面的配置清单

在这里插入图片描述
随后到“我的GPU容器”进行支付,此后会发送给您一封邮件。

在这里插入图片描述

在这里插入图片描述
打开xshell,并按下图按钮

在这里插入图片描述
按照邮件内容填写远程服务器ip地址和端口
在这里插入图片描述
填写用户名
在这里插入图片描述

填写密码(ssh初始密码)(记得也要勾选记住密码选项)
在这里插入图片描述

连接成功啦!按下图打开xftp(可以用它来在图形界面下管理远程服务器的文件)

在这里插入图片描述
然后直接将本地刚刚编写好的文件直接拖动到远程服务器root文件夹下,并右键该文件,复制路径。

在这里插入图片描述
在这里插入图片描述

在xshell中输入“python ”(后边有个空格不要忘记)然后在xshell中右键粘贴刚才复制的路径
在这里插入图片描述

按回车即可运行python文件
在这里插入图片描述

记得扫描二维码进群哦!群文件中还有百本深度学习强化学习2020最新书籍。

在这里插入图片描述

### 使用1080 Ti2080 Ti GPU训练高效强大目标检测模型 #### 选择合适的硬件环境 当考虑使用1080 Ti2080 Ti进行深度学习模型特别是目标检测模型的训练时,不同硬件的选择会对最终的结果有影响。对于A100和3080平台而言,采用2080ti进行深度学习模型训练过程中,CPU和GPU的资源分配与利用率存在差异[^1]。 #### 准备工作环境 为了确保能够充分利用这些高端显卡的能力,在准备阶段应该确认所使用的软件版本兼容性良好。例如,安装了支持特定CUDA版本(如CUDA 11.0)的PyTorch框架后,可以在2080Ti以及更先进的3080Ti上顺利执行深度学习任务;值得注意的是,尽管较新的CUDA版本通常会提供更好的性能优化和支持更多的新特性,但它同样保持向后兼容旧型号的GPU设备,这意味着即使是像2080Ti这样的老款旗舰级产品也能享受到最新的技术进步带来的好处[^4]。 #### 数据预处理 数据集的质量直接影响到模型的表现效果。因此,在正式开始训练之前,应当先对原始图像资料做必要的清理、标注等工作,并可能还需要根据具体应用场景调整图片尺寸大小以适应网络输入需求。此外,还可以通过对已有样本实施随机裁剪、翻转等增强操作来扩充有效信息量,进而帮助改善泛化能力。 #### 构建并优化神经网络架构 构建适合目标任务特点的目标检测器至关重要。可以选择基于现有成熟方案比如Faster R-CNN, YOLO系列或是SSD作为起点来进行改进定制。与此同时,考虑到实际部署场景下的效率考量因素,则需权衡精度同推理速度之间的关系——既追求尽可能高的识别准确性又兼顾实时响应的要求。在此基础上,借助于诸如混合精度训练(Mixed Precision Training),梯度累积(Gradient Accumulation)等技巧进一步缩短收敛时间的同时维持良好的泛化水平。 #### 利用MATLAB实现高效的GPU加速 除了上述通用建议外,如果倾向于利用MATLAB开展研究开发活动的话,那么就可以充分发挥其内置的强大功能库的优势。MATLAB不仅可以直接调用NVIDIA CUDA内核完成底层运算逻辑转换,而且允许开发者通过编写自定义C/C++扩展模块的方式深入挖掘潜在算力潜能。更重要的是,凭借parfor循环结构配合batch processing机制可轻松实现在多张独立显存空间上的分布式作业调度安排,从而达到最大化吞吐率的目的[^3]。 ```matlab % 创建gpuArray对象用于存储待处理的数据矩阵 X_gpu = gpuArray(X); % 定义卷积层参数初始化方式 weights = randn([filterHeight filterWidth numChannels numFilters], 'single', 'like', X_gpu); bias = zeros(numFilters, 1, 'like', weights); % 执行前向传播过程中的激活函数计算部分 Y = relu(convn(X_gpu, weights) + bias); ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值