sklearn实现标准化

from sklearn.preprocessing import StandardScaler

X = [
	[1,2,3,2],
	[7,8,9,2.01],
	[4,8,2,2.01],
	[9,5,2,1.99],
	[7,5,3,1.99],
	[1,4,5,9]
]
ss = StandardScaler(with_mean=True,with_std=True)
ss.fit(X)

print(ss.mean_)
print(ss.n_samples_seen_)
print(ss.scale_) 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值