LSTM预测股票数据---数据预处理

本文将介绍如何利用LSTM神经网络对股票数据进行预处理和建模。首先,我们将探讨数据清洗和标准化的重要性,然后讲解如何将时间序列数据转化为LSTM可接受的输入格式。接着,我们将构建LSTM模型并训练它来预测股票价格。最后,通过评估模型性能,展示预处理在提升预测准确率方面的作用。
摘要由CSDN通过智能技术生成
# 导入相应的模块
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf

# 获取训练集
def get_train_data(data,batch_size = 60 ,time_step = 20,train_begin = 0,train_end = 5800):
	batch_index = []
	data_train = data[train_begin:train_end]
	normalized_train_data = (data_train - np.mean(data_train,axis = 0)/np.std(data_train,axis = 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值