# 导入相应的模块
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
# 获取训练集
def get_train_data(data,batch_size = 60 ,time_step = 20,train_begin = 0,train_end = 5800):
batch_index = []
data_train = data[train_begin:train_end]
normalized_train_data = (data_train - np.mean(data_train,axis = 0)/np.std(data_train,axis =
LSTM预测股票数据---数据预处理
本文将介绍如何利用LSTM神经网络对股票数据进行预处理和建模。首先,我们将探讨数据清洗和标准化的重要性,然后讲解如何将时间序列数据转化为LSTM可接受的输入格式。接着,我们将构建LSTM模型并训练它来预测股票价格。最后,通过评估模型性能,展示预处理在提升预测准确率方面的作用。
摘要由CSDN通过智能技术生成