kafka 参数详情说明

Kafka主要参数详解 一、相关参数配置

############################ System #############################
#唯一标识在集群中的ID,要求是正数。
broker.id=0
#服务端口,默认9092
port=9092
#监听地址,不设为所有地址
host.name=debugo01

处理网络请求的最大线程数

num.network.threads=2

处理磁盘I/O的线程数

num.io.threads=8

一些后台线程数

background.threads = 4

等待IO线程处理的请求队列最大数

queued.max.requests = 500

socket的发送缓冲区(SO_SNDBUF)

socket.send.buffer.bytes=1048576

socket的接收缓冲区 (SO_RCVBUF)

socket.receive.buffer.bytes=1048576

socket请求的最大字节数。为了防止内存溢出,message.max.bytes必然要小于

socket.request.max.bytes = 104857600

############################# Topic #############################

每个topic的分区个数,更多的partition会产生更多的segment file

num.partitions=2

是否允许自动创建topic ,若是false,就需要通过命令创建topic

auto.create.topics.enable =true

一个topic ,默认分区的replication个数 ,不能大于集群中broker的个数。

default.replication.factor =1

消息体的最大大小,单位是字节

message.max.bytes = 1000000

############################# ZooKeeper #############################

Zookeeper quorum设置。如果有多个使用逗号分割

zookeeper.connect=debugo01:2181,debugo02,debugo03

连接zk的超时时间

zookeeper.connection.timeout.ms=1000000

ZooKeeper集群中leader和follower之间的同步实际

zookeeper.sync.time.ms = 2000

############################# Log #############################
#日志存放目录,多个目录使用逗号分割
log.dirs=/var/log/kafka

当达到下面的消息数量时,会将数据flush到日志文件中。默认10000

#log.flush.interval.messages=10000

当达到下面的时间(ms)时,执行一次强制的flush操作。interval.ms和interval.messages无论哪个达到,都会flush。默认3000ms

#log.flush.interval.ms=1000

检查是否需要将日志flush的时间间隔

log.flush.scheduler.interval.ms = 3000

日志清理策略(delete|compact)

log.cleanup.policy = delete

日志保存时间 (hours|minutes),默认为7天(168小时)。超过这个时间会根据policy处理数据。bytes和minutes无论哪个先达到都会触发。

log.retention.hours=168

日志数据存储的最大字节数。超过这个时间会根据policy处理数据。

#log.retention.bytes=1073741824

控制日志segment文件的大小,超出该大小则追加到一个新的日志segment文件中(-1表示没有限制)

log.segment.bytes=536870912

当达到下面时间,会强制新建一个segment

log.roll.hours = 24*7

日志片段文件的检查周期,查看它们是否达到了删除策略的设置(log.retention.hours或log.retention.bytes)

log.retention.check.interval.ms=60000

是否开启压缩

log.cleaner.enable=false

对于压缩的日志保留的最长时间

log.cleaner.delete.retention.ms = 1 day

对于segment日志的索引文件大小限制

log.index.size.max.bytes = 10 * 1024 * 1024
#y索引计算的一个缓冲区,一般不需要设置。
log.index.interval.bytes = 4096

############################# replica #############################

partition management controller 与replicas之间通讯的超时时间

controller.socket.timeout.ms = 30000

controller-to-broker-channels消息队列的尺寸大小

controller.message.queue.size=10

replicas响应leader的最长等待时间,若是超过这个时间,就将replicas排除在管理之外

replica.lag.time.max.ms = 10000

是否允许控制器关闭broker ,若是设置为true,会关闭所有在这个broker上的leader,并转移到其他broker

controlled.shutdown.enable = false

控制器关闭的尝试次数

controlled.shutdown.max.retries = 3

每次关闭尝试的时间间隔

controlled.shutdown.retry.backoff.ms = 5000

如果relicas落后太多,将会认为此partition relicas已经失效。而一般情况下,因为网络延迟等原因,总会导致replicas中消息同步滞后。如果消息严重滞后,leader将认为此relicas网络延迟较大或者消息吞吐能力有限。在broker数量较少,或者网络不足的环境中,建议提高此值.

replica.lag.max.messages = 4000
#leader与relicas的socket超时时间
replica.socket.timeout.ms= 30 * 1000

leader复制的socket缓存大小

replica.socket.receive.buffer.bytes=64 * 1024

replicas每次获取数据的最大字节数

replica.fetch.max.bytes = 1024 * 1024

replicas同leader之间通信的最大等待时间,失败了会重试

replica.fetch.wait.max.ms = 500

每一个fetch操作的最小数据尺寸,如果leader中尚未同步的数据不足此值,将会等待直到数据达到这个大小

replica.fetch.min.bytes =1

leader中进行复制的线程数,增大这个数值会增加relipca的IO

num.replica.fetchers = 1

每个replica将最高水位进行flush的时间间隔

replica.high.watermark.checkpoint.interval.ms = 5000

是否自动平衡broker之间的分配策略

auto.leader.rebalance.enable = false

leader的不平衡比例,若是超过这个数值,会对分区进行重新的平衡

leader.imbalance.per.broker.percentage = 10

检查leader是否不平衡的时间间隔

leader.imbalance.check.interval.seconds = 300

客户端保留offset信息的最大空间大小

offset.metadata.max.bytes = 1024

#############################Consumer #############################

Consumer端核心的配置是group.id、zookeeper.connect

决定该Consumer归属的唯一组ID,By setting the same group id multiple processes indicate that they are all part of the same consumer group.

group.id

消费者的ID,若是没有设置的话,会自增

consumer.id

一个用于跟踪调查的ID ,最好同group.id相同

client.id = <group_id>

对于zookeeper集群的指定,必须和broker使用同样的zk配置

zookeeper.connect=debugo01:2182,debugo02:2182,debugo03:2182

zookeeper的心跳超时时间,超过这个时间就认为是无效的消费者

zookeeper.session.timeout.ms = 6000

zookeeper的等待连接时间

zookeeper.connection.timeout.ms = 6000

zookeeper的follower同leader的同步时间

zookeeper.sync.time.ms = 2000

当zookeeper中没有初始的offset时,或者超出offset上限时的处理方式 。

smallest :重置为最小值

largest:重置为最大值

anything else:抛出异常给consumer

auto.offset.reset = largest
/*
kafka + zookeeper,当消息被消费时,会向zk提交当前groupId的consumer消费的offset信息,当consumer再次启动将会从此offset开始继续消费.
在consumter端配置文件中(或者是ConsumerConfig类参数)有个"autooffset.reset"(在kafka 0.8版本中为auto.offset.reset),有2个合法的值"largest"/“smallest”,默认为"largest",此配置参数表示当此groupId下的消费者,在ZK中没有offset值时(比如新的groupId,或者是zk数据被清空),consumer应该从哪个offset开始消费.
1、largest表示接受接收最大的offset(即最新消息),
2、smallest表示最小offset,即从topic的开始位置消费所有消息.
*/

socket的超时时间,实际的超时时间为max.fetch.wait + socket.timeout.ms.

socket.timeout.ms= 30 * 1000

socket的接收缓存空间大小

socket.receive.buffer.bytes=64 * 1024
#从每个分区fetch的消息大小限制
fetch.message.max.bytes = 1024 * 1024

true时,Consumer会在消费消息后将offset同步到zookeeper,这样当Consumer失败后,新的consumer就能从zookeeper获取最新的offset

auto.commit.enable = true ,项目里用false 不知道是什么原因

自动提交的时间间隔

auto.commit.interval.ms = 60 * 1000

用于消费的最大数量的消息块缓冲大小,每个块可以等同于fetch.message.max.bytes中数值

queued.max.message.chunks = 10

当有新的consumer加入到group时,将尝试reblance,将partitions的消费端迁移到新的consumer中, 该设置是尝试的次数

rebalance.max.retries = 4

每次reblance的时间间隔

rebalance.backoff.ms = 2000

每次重新选举leader的时间

refresh.leader.backoff.ms

server发送到消费端的最小数据,若是不满足这个数值则会等待直到满足指定大小。默认为1表示立即接收。

fetch.min.bytes = 1

若是不满足fetch.min.bytes时,等待消费端请求的最长等待时间

fetch.wait.max.ms = 100

如果指定时间内没有新消息可用于消费,就抛出异常,默认-1表示不受限

consumer.timeout.ms = -1

#############################Producer#############################

核心的配置包括:

metadata.broker.list

request.required.acks

producer.type

serializer.class

消费者获取消息元信息(topics, partitions and replicas)的地址,配置格式是:host1:port1,host2:port2,也可以在外面设置一个vip

metadata.broker.list

#消息的确认模式

0:不保证消息的到达确认,只管发送,低延迟但是会出现消息的丢失,在某个server失败的情况下,有点像TCP

1:发送消息,并会等待leader 收到确认后,一定的可靠性

-1:发送消息,等待leader收到确认,并进行复制操作后,才返回,最高的可靠性

request.required.acks = 0

消息发送的最长等待时间

request.timeout.ms = 10000

socket的缓存大小

send.buffer.bytes=100*1024

key的序列化方式,若是没有设置,同serializer.class

key.serializer.class

分区的策略,默认是取模

partitioner.class=kafka.producer.DefaultPartitioner

消息的压缩模式,默认是none,可以有gzip和snappy

compression.codec = none

可以针对默写特定的topic进行压缩

compressed.topics=null

消息发送失败后的重试次数

message.send.max.retries = 3

每次失败后的间隔时间

retry.backoff.ms = 100

生产者定时更新topic元信息的时间间隔 ,若是设置为0,那么会在每个消息发送后都去更新数据

topic.metadata.refresh.interval.ms = 600 * 1000

用户随意指定,但是不能重复,主要用于跟踪记录消息

client.id=""

异步模式下缓冲数据的最大时间。例如设置为100则会集合100ms内的消息后发送,这样会提高吞吐量,但是会增加消息发送的延时

queue.buffering.max.ms = 5000

异步模式下缓冲的最大消息数,同上

queue.buffering.max.messages = 10000

异步模式下,消息进入队列的等待时间。若是设置为0,则消息不等待,如果进入不了队列,则直接被抛弃

queue.enqueue.timeout.ms = -1

异步模式下,每次发送的消息数,当queue.buffering.max.messages或queue.buffering.max.ms满足条件之一时producer会触发发送。

batch.num.messages=200

二、server.properties中所有配置参数说明(解释)如下列表:

参数 说明(解释)
broker.id =0 每一个broker在集群中的唯一表示,要求是正数。当该服务器的IP地址发生改变时,broker.id没有变化,则不会影响consumers的消息情况
log.dirs=/data/kafka-logs kafka数据的存放地址,多个地址的话用逗号分割/data/kafka-logs-1,/data/kafka-logs-2
port =9092 broker server服务端口
message.max.bytes =6525000 表示消息体的最大大小,单位是字节
num.network.threads =4 broker处理消息的最大线程数,一般情况下不需要去修改
num.io.threads =8 broker处理磁盘IO的线程数,数值应该大于你的硬盘数
background.threads =4 一些后台任务处理的线程数,例如过期消息文件的删除等,一般情况下不需要去做修改
queued.max.requests =500 等待IO线程处理的请求队列最大数,若是等待IO的请求超过这个数值,那么会停止接受外部消息,应该是一种自我保护机制。
host.name broker的主机地址,若是设置了,那么会绑定到这个地址上,若是没有,会绑定到所有的接口上,并将其中之一发送到ZK,一般不设置
socket.send.buffer.bytes=1001024 socket的发送缓冲区,socket的调优参数SO_SNDBUFF
socket.receive.buffer.bytes =100
1024 socket的接受缓冲区,socket的调优参数SO_RCVBUFF
socket.request.max.bytes =10010241024 socket请求的最大数值,防止serverOOM,message.max.bytes必然要小于socket.request.max.bytes,会被topic创建时的指定参数覆盖
log.segment.bytes =102410241024 topic的分区是以一堆segment文件存储的,这个控制每个segment的大小,会被topic创建时的指定参数覆盖
log.roll.hours =247 这个参数会在日志segment没有达到log.segment.bytes设置的大小,也会强制新建一个segment会被 topic创建时的指定参数覆盖
log.cleanup.policy = delete 日志清理策略选择有:delete和compact主要针对过期数据的处理,或是日志文件达到限制的额度,会被 topic创建时的指定参数覆盖
log.retention.minutes=3days 数据存储的最大时间超过这个时间会根据log.cleanup.policy设置的策略处理数据,也就是消费端能够多久去消费数据
log.retention.bytes和log.retention.minutes任意一个达到要求,都会执行删除,会被topic创建时的指定参数覆盖
log.retention.bytes=-1 topic每个分区的最大文件大小,一个topic的大小限制 =分区数
log.retention.bytes。-1没有大小限log.retention.bytes和log.retention.minutes任意一个达到要求,都会执行删除,会被topic创建时的指定参数覆盖
log.retention.check.interval.ms=5minutes 文件大小检查的周期时间,是否处罚 log.cleanup.policy中设置的策略
log.cleaner.enable=false 是否开启日志压缩
log.cleaner.threads = 2 日志压缩运行的线程数
log.cleaner.io.max.bytes.per.second=None 日志压缩时候处理的最大大小
log.cleaner.dedupe.buffer.size=50010241024 日志压缩去重时候的缓存空间,在空间允许的情况下,越大越好
log.cleaner.io.buffer.size=5121024 日志清理时候用到的IO块大小一般不需要修改
log.cleaner.io.buffer.load.factor =0.9 日志清理中hash表的扩大因子一般不需要修改
log.cleaner.backoff.ms =15000 检查是否处罚日志清理的间隔
log.cleaner.min.cleanable.ratio=0.5 日志清理的频率控制,越大意味着更高效的清理,同时会存在一些空间上的浪费,会被topic创建时的指定参数覆盖
log.cleaner.delete.retention.ms =1day 对于压缩的日志保留的最长时间,也是客户端消费消息的最长时间,同log.retention.minutes的区别在于一个控制未压缩数据,一个控制压缩后的数据。会被topic创建时的指定参数覆盖
log.index.size.max.bytes =10
1024*1024 对于segment日志的索引文件大小限制,会被topic创建时的指定参数覆盖
log.index.interval.bytes =4096 当执行一个fetch操作后,需要一定的空间来扫描最近的offset大小,设置越大,代表扫描速度越快,但是也更好内存,一般情况下不需要搭理这个参数
log.flush.interval.messages=None log文件”sync”到磁盘之前累积的消息条数,因为磁盘IO操作是一个慢操作,但又是一个”数据可靠性"的必要手段,所以此参数的设置,需要在"数据可靠性"与"性能"之间做必要的权衡.如果此值过大,将会导致每次"fsync"的时间较长(IO阻塞),如果此值过小,将会导致"fsync"的次数较多,这也意味着整体的client请求有一定的延迟.物理server故障,将会导致没有fsync的消息丢失.
log.flush.scheduler.interval.ms =3000 检查是否需要固化到硬盘的时间间隔
log.flush.interval.ms = None 仅仅通过interval来控制消息的磁盘写入时机,是不足的.此参数用于控制"fsync"的时间间隔,如果消息量始终没有达到阀值,但是离上一次磁盘同步的时间间隔达到阀值,也将触发.
log.delete.delay.ms =60000 文件在索引中清除后保留的时间一般不需要去修改
log.flush.offset.checkpoint.interval.ms =60000 控制上次固化硬盘的时间点,以便于数据恢复一般不需要去修改
auto.create.topics.enable =true 是否允许自动创建topic,若是false,就需要通过命令创建topic
default.replication.factor =1 是否允许自动创建topic,若是false,就需要通过命令创建topic
num.partitions =1 每个topic的分区个数,若是在topic创建时候没有指定的话会被topic创建时的指定参数覆盖

以下是kafka中Leader,replicas配置参数
controller.socket.timeout.ms =30000 partition leader与replicas之间通讯时,socket的超时时间
controller.message.queue.size=10 partition leader与replicas数据同步时,消息的队列尺寸
replica.lag.time.max.ms =10000 replicas响应partition leader的最长等待时间,若是超过这个时间,就将replicas列入ISR(in-sync replicas),并认为它是死的,不会再加入管理中
replica.lag.max.messages =4000 如果follower落后与leader太多,将会认为此follower[或者说partition relicas]已经失效
##通常,在follower与leader通讯时,因为网络延迟或者链接断开,总会导致replicas中消息同步滞后
##如果消息之后太多,leader将认为此follower网络延迟较大或者消息吞吐能力有限,将会把此replicas迁移
##到其他follower中.
##在broker数量较少,或者网络不足的环境中,建议提高此值.
replica.socket.timeout.ms=301000 follower与leader之间的socket超时时间
replica.socket.receive.buffer.bytes=64
1024 leader复制时候的socket缓存大小
replica.fetch.max.bytes =1024*1024 replicas每次获取数据的最大大小
replica.fetch.wait.max.ms =500 replicas同leader之间通信的最大等待时间,失败了会重试
replica.fetch.min.bytes =1 fetch的最小数据尺寸,如果leader中尚未同步的数据不足此值,将会阻塞,直到满足条件
num.replica.fetchers=1 leader进行复制的线程数,增大这个数值会增加follower的IO
replica.high.watermark.checkpoint.interval.ms =5000 每个replica检查是否将最高水位进行固化的频率
controlled.shutdown.enable =false 是否允许控制器关闭broker ,若是设置为true,会关闭所有在这个broker上的leader,并转移到其他broker
controlled.shutdown.max.retries =3 控制器关闭的尝试次数
controlled.shutdown.retry.backoff.ms =5000 每次关闭尝试的时间间隔
leader.imbalance.per.broker.percentage =10 leader的不平衡比例,若是超过这个数值,会对分区进行重新的平衡
leader.imbalance.check.interval.seconds =300 检查leader是否不平衡的时间间隔
offset.metadata.max.bytes 客户端保留offset信息的最大空间大小
kafka中zookeeper参数配置
zookeeper.connect = localhost:2181 zookeeper集群的地址,可以是多个,多个之间用逗号分割hostname1:port1,hostname2:port2,hostname3:port3
zookeeper.session.timeout.ms=6000 ZooKeeper的最大超时时间,就是心跳的间隔,若是没有反映,那么认为已经死了,不易过大
zookeeper.connection.timeout.ms =6000 ZooKeeper的连接超时时间
zookeeper.sync.time.ms =2000 ZooKeeper集群中leader和follower之间的同步实际那

回答: @KafkaListener是Spring Kafka提供的注解,用于标记一个方法作为Kafka消息的消费者。它有几个参数可以进行配置。首先是id参数,用于指定消费者的唯一标识符。topics参数用于指定要消费的主题名称。containerFactory参数用于指定使用的KafkaListenerContainerFactory,它是用于创建Kafka监听器容器的工厂类。errorHandler参数用于指定错误处理器,用于处理消费过程中的异常。@Payload注解用于指定方法的参数作为消息的有效负载。@Valid注解用于指定对消息进行验证。\[1\] 另外,可以使用@Bean注解创建一个KafkaListenerContainerFactory的实例,用于配置批量消费的工厂类。可以通过设置factory.setBatchListener(true)来开启批量消费模式。\[2\] 在使用@KafkaListener注解时,还可以使用KafkaListenerEndpointRegistry来管理和获取已注册的监听器。可以通过registry.getAllListenerContainers()方法获取所有已注册的监听器容器。\[3\] #### 引用[.reference_title] - *1* *2* *3* [kafka系列(09):SpringBoot 中使用@KafkaListener详解与使用](https://blog.csdn.net/xsxy0506/article/details/117064991)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值