1.1.1 原子物理学——氢原子的电子轨道半径、能量、速度

https://blog.csdn.net/qq_35379989/article/details/130065868?spm=1001.2014.3001.5501中我们已经给出了波尔模型的三大假设:定态假设、跃迁假设以及角动量量子化。

一、氢原子的轨道半径

在跃迁假设中,通过设定波尔模型轨道能量:E_n=-\frac{R_H h c}{n^2}与电子动能和势能能量公式:E=T+V=\frac{1}{2} m_e v^2-\frac{1}{4 \pi \varepsilon_0} \cdot \frac{Z e^2}{r}=-\frac{1}{2} \frac{1}{4 \pi \varepsilon_0} \cdot \frac{Z e^2}{r}联立,可以得到电子的轨道半径为:r_n=\frac{1}{4 \pi \varepsilon_0} \frac{e^2}{2 R_H h c} n^2

在上方,已经给出了电子轨道半径为:r_n=\frac{1}{4 \pi \varepsilon_0} \frac{e^2}{2 R_H h c} n^2,结合R_H=\frac{2 \pi^2 e^4 m_e}{\left(4 \pi \varepsilon_0\right)^2 \cdot c h^3}

令:a_0=\frac{4 \pi \varepsilon_0 h^2}{4 \pi^2 m e^2}=0.53 \times 10^{-10} \mathrm{~m}

则可以获得氢原子量子化的轨道半径为:r_n=a_0 n^2(其中,n为氢原子的线系/主量子数,n=1为莱曼系,n=2为巴尔末系,...)

当n=1时,我们称其为氢原子的第一波尔半径,简称为波尔半径。

二、氢原子能量

氢原子电子轨道能量为:E_n=-\frac{R_H h c}{n^2},且里德伯常数有公式:R_H=\frac{2 \pi^2 e^4 m_e}{\left(4 \pi \varepsilon_0\right)^2 \cdot c h^3},带入后可得:

E_n=-\frac{2 \pi^2 e^4 m_e}{\left(4 \pi \varepsilon_0\right)^2 \cdot h^2} \frac{1}{n^2}=-\frac{m_e c^2}{2}\left(\frac{e^2}{4 \pi \varepsilon_0 \hbar c}\right)^2 \frac{1}{n^2}

其中,将\frac{e^2}{4 \pi \varepsilon_0 \hbar c}定义为\alpha,其值近似为:\alpha \approx \frac{1}{137}(1/137为一个神奇的无量纲常数,可以再电动力学、量子力学和相对论中看到它)。

将已知常数带入,可以进一步得到,氢原子的能量表达式为:

E_n=-13.6 \frac{1}{n^2}(\mathrm{eV})

当n=1时为氢原子的基态能量,数值为:E_1 \approx-13.6 \mathrm{eV}

需注意的是:基态是能量最低的能级,其余能级均为激发态,激发态寿命一般很短,只有几纳秒。

三、氢原子速度

根据氢原子的所受库仑力为氢原子电子提供向心力,可得:\frac{1}{4 \pi \varepsilon_0} \cdot \frac{Z e^2}{r_n^2}=m_e \frac{v_n^2}{r_n}

依据上式,可得电子运行速度为:v_n=\sqrt{\frac{Z e^2}{4 \pi \varepsilon_0 m_e r_n}}

一中已知电子的轨道半径为:r_n=\frac{4 \pi \varepsilon_0 h^2}{4 \pi^2 m_e e^2} n^2

将轨道半径公式带入电子运行速度公式可以得到:

v_n=\frac{e^2}{4 \pi \varepsilon_0 \cdot \hbar} \frac{1}{n}=\frac{e^2 c}{4 \pi \varepsilon_0 \cdot \hbar c} \frac{1}{n}=\frac{\alpha c}{n},其中\alpha=\frac{e^2}{4 \pi \varepsilon_0 \cdot \hbar \cdot c}

当n=1时,即为基态氢原子的速度v_1 \approx \alpha c

内容概要:该论文研究了一种基于行波理论的输电线路故障诊断方法。当输电线路发生故障时,故障点会产生向两侧传播的电流和电压行波。通过相模变换对三相电流行波解耦,利用解耦后独立模量间的关系确定故障类型和相别,再采用小波变换模极大值法标定行波波头,从而计算故障点距离。仿真结果表明,该方法能准确识别故障类型和相别,并对故障点定位具有高精度。研究使用MATLAB进行仿真验证,为输电线路故障诊断提供了有效解决方案。文中详细介绍了三相电流信号生成、相模变换(Clarke变换)、小波变换波头检测、故障诊断主流程以及结果可视化等步骤,并通过多个实例验证了方法的有效性和准确性。 适合人群:具备一定电力系统基础知识和编程能力的专业人士,特别是从事电力系统保护与控制领域的工程师和技术人员。 使用场景及目标:①适用于电力系统的故障检测与诊断;②能够快速准确地识别输电线路的故障类型、相别及故障点位置;③为电力系统的安全稳定运行提供技术支持,减少停电时间和损失。 其他说明:该方法不仅在理论上进行了深入探讨,还提供了完整的Python代码实现,便于读者理解和实践。此外,文中还讨论了行波理论的核心公式、三相线路行波解耦、行波测距实现等关键技术点,并针对工程应用给出了注意事项,如波速校准、采样率要求、噪声处理等。这使得该方法不仅具有学术价值,也具有很强的实际应用前景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

autotian

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值