【半导体物理】笔记 柴常春 西安电子科技大学 更新ing...

绪论和预备知识

0.0 绪论

《半导体物理》讲了什么?

研究半导体材料受外界因素变化的原因和规律

什么是半导体?

  • 按电阻率划分:
导体半导体绝缘体
电阻率 ρ \rho ρ Ω ⋅ c m \Omega·cm Ωcm< 1 0 − 3 10^{-3} 103 1 0 − 3 − 1 0 9 10^{-3}-10^{9} 103109> 1 0 9 10^{9} 109
  • 此外,半导体具有如下特性:

    1. 温度的升高可以显著提升半导体的导电能力
    2. 微量杂质的含量可以显著改变半导体的导电能力
    3. 光照可以显著改变半导体的导电能力
    4. 磁场和电场的改变可以显著改变半导体的导电能力
  • 例如:100万个Si原子中,掺入一个杂质原子(99.999%纯度硅),在室温下(27°C,T = 300K )电阻率由214,000 Ω \Omega Ω·cm 降低至 0.2 Ω \Omega Ω·cm

  • 半导体的定义:电阻率容易受光、热、磁、电及微量杂质含量变化而变化的材料。

0.1 化学键和晶体结构

0.1.1 基本概念

晶体

固体
晶体
非晶体: 非晶硅a-Si
单晶体: Si Ge GaAs
多晶体
  • 晶体具有一定规则的外形和固定的熔点,组成晶体的离子或原子(在较大的范围内,至少是 μ m \mu m μm 数量级)都是按照一定的方式有规则地排列而成的(长程有序)。
  • 非晶体无规则外形和固定熔点,内部也无长程有序,但是短程有序。
  • 单晶是原子或离子的一种排列方式贯穿始终,而多晶由许多小晶粒杂乱堆积而成。

化学键

  • 化学键:组成晶体的原子或离子之间的结合力

原子的负电性

  • 原子的负电性:衡量原子对核外电子束缚能力的强弱的量,包括电离能亲合能
  • 电离能:原子失去价电子需要的能量
  • 亲合能:由中性原子获取一个价电子成为负离子所释放的能量
  • 原子的负电性 = (电离能 + 亲合能)× 0.18(使Li的亲合能为1)
  • 负电性反映了原子相互键合时最外层电子得失的难易程度
  • 负电性大 ⇒ 电离能大或亲合能大:电离能大说明电子很难挣脱原子束缚;亲合能大说明电子有较大能力获得外来电子。
  • 结论:价电子总是向负电性大的原子转移。
ⅠAⅡAⅢBⅣBⅤBⅥBⅦB
Li1.0Be1.5B2.0C2.5N3.0O3.5F4.0
Na0,9Mg1.2Al1.5Si1.8P2.1S2.5Cl3.0
K0.8Ca1.0Ga1.5Ge1.8As2.0Se2,4Br2.8
In1.5Sn1.8Sb1.9Te2.1I2.6
  • 同一行:左👉右,负电性↑,非金属性↑
  • 同一列:上👉下,负电性↓,金属性↑

0.1.2 化学键的类型和晶体结构的规律

离子键和离子晶体(以NaCl晶体为例)

  • ⅠA 族元素具有最低负电性,容易失去电子( N a + Na^{+} Na+);
  • ⅦB 族元素具有最高负电性,容易获得电子( C l − Cl^{-} Cl);
  • 由离子键结合而成的晶体称为离子晶体( N a C l NaCl NaCl 晶体);
  • 任意一个离子的最近邻一定是带相反电荷的另一种离子,这是静电引力的结果。(即 N a + Na^{+} Na+ C l − Cl^{-} Cl通过静电引力形成 N a C l NaCl NaCl 晶体)

在这里插入图片描述

  • 配位数:晶体中任一原子/离子周围最近邻的原子/离子数,配位数的大小反映晶体中离子或原子排列的密集程度。(由上图可知 N a C l NaCl NaCl 晶体配位数为6)

晶体结构的基本单元 ——— 晶胞

  • 晶胞:反映了晶体的周期性和对称性,整个晶体是由晶胞周期性重复排列形成的。

在这里插入图片描述

  • 上图为 N a C l NaCl NaCl 晶体的晶胞结构为面心立方(只看 N a + Na^{+} Na+ C l − Cl^{-} Cl);
  • 表述: N a C l NaCl NaCl 晶体由 N a + Na^{+} Na+ C l − Cl^{-} Cl组成的面心立方套构而成;
  • N a C l NaCl NaCl 晶体中, N a Na Na原子的的价电子已经完全转移到 C l Cl Cl原子的最外层轨道上,它们呗束缚在各个离子上,不能自由运动,因此离子晶体一般是绝缘体。

共价键与共价晶体(金刚石、Si、Ge)

  • 同种原子组成的晶体,原子之间无负电性差异,因此无价电子在原子间的转移,而是两个原子之间依靠共有一对自旋相反配对的价电子。它们的电子云在两个原子之间相互重叠而具有较高的密度(因而交叠处略带负电),带正电的原子实靠两个电子间的带负电的电子云之间所形成的结合力,将原子结合成晶体。
  • 电子云:用颜色的深度表示电子的分布密度(或出现的概率),像云一样。
  • 依靠一对自旋相反配对形成的结合力称为共价键。由共价键结合而形成的晶体称为共价晶体。如金刚石(C)、Si、Ge都是典型的共价晶体。
  • 共价键的特点:饱和性、方向性
  • 饱和性:一个原子与周围原子之间形成的共价键数目是有限制的,即不会无限和其他原子形成共价键;
  • 方向性:原子之间形成共价键时,电子云的相互重叠在空间的一定方向(共价键方向)上具有高密度。

方向性的量子力学解释

  • 微观粒子的波函数有四种:包括球面对称的 Ψ S \Psi_S ΨS ,关于三维坐标系的三个轴对称的 Ψ X \Psi_X ΨX Ψ Y \Psi_Y ΨY Ψ Z \Psi_Z ΨZ,电子的波函数是四种形式的线性叠加。 Ψ i \Psi_i Ψi( i i i = 1,2,3,4) = a i Ψ S + b i Ψ X + c i Ψ Y + d i Ψ Z a_i\Psi_S+b_i\Psi_X+c_i\Psi_Y+d_i\Psi_Z aiΨS+biΨX+ciΨY+diΨZ
  • 按照系统能量最低原则可确定 a i 、 b i 、 c i 、 d i a_i、b_i、c_i、d_i aibicidi 解出 Ψ i \Psi_i Ψi ∣ Ψ i ∗ Ψ i ∣ |\Psi_i^*\Psi_i| ΨiΨi最大值的方向即共价键的方向。
  • 以上过程对应了轨道杂化

Si晶体共价键结构

在这里插入图片描述

  • 上图中5个Si原子组成共价四面体,共价键之间的夹角为109°28′;
  • 在共价四面体中,若把原子放大为球状直到有两个原子彼此相切,球的半径称为共价半径,原子间距 = 2 × 共价半径
金刚石(C)SiGe
共价半径( A ˚ Å A˚0.771.171.22
最近邻原子间距1.542.342.44
  • 共价四面体不能像 N a C l NaCl NaCl 晶胞那样平移得到金刚石晶体;

金刚石结构晶胞

  • 金刚石立方晶系

在这里插入图片描述

  • 金刚石结构的晶胞是正立方体(如上图所示),八个顶点上各有一个原子,六个面心上各有一个原子,四条空间体对角线1/4位置处4个(靠上下各两个)原子;
  • 晶格常数:立方晶系的边长晶格常数,记作a;
  • 金刚石结构的原子密度 = 8 × 1 8 + 6 × 1 2 + 4 a 3 \frac{8×{\frac{1}{8}}+6×{\frac{1}{2}}+4}{a^3} a38×81+6×21+4 分子为原子数,分母为立方晶系的体积。将立方晶系切割成8个小立方体;顶点上原子8个立方体各占一个,8个立方晶系共用一个原子,因此 × 1 8 × \frac{1}{8} ×81;面心原子,6个面每个面各一个原子,两个立方晶系共用一个面,因此 × 1 2 × \frac{1}{2} ×21
  • 金刚石晶胞就是由上面8个小立方体中的4个组成,即上层四个立方体对角的两个立方体和下层四个立方体的另两个对角方向的两个立方体。
  • 所谓金刚石结构,也就是由两个相同原子组成的面心立方,沿空间对角线方向相互平移1/4对角线长度套构而成的。
原子序数共价半径Å最近邻原子间距 Å相对硬度电阻率 (300K Ω ⋅ c m \Omega·cm Ωcm)熔点℃
金刚石60.771.5410~ 1 0 18 10^{18} 10183800
Si141.172.347~2.3× 1 0 5 10^{5} 1051420
Ge321.222.446~47941
  • 由Ⅳ族元素所构成晶体的导电性,金刚石(绝缘体)👉 S i 、 G e 、 S n ( < 13 ℃ 灰 锡 ) ‾ \underline{Si、Ge、Sn(<13℃ 灰锡)} SiGeSn(<13)(半导体)👉 S n ( > 13 ℃ 白 锡 ) 、 P b ‾ \underline{Sn(>13℃ 白锡)、Pb} Sn(>13)Pb(导体)
  • Si、Ge都是金刚石结构的晶胞

金属键和金属晶体

  • ⅠⅡⅢ族元素具有较低的负电性,对价电子的束缚能力弱,在结合成晶体时原先分属于各个原子的价电子不再属于某一个特定原子,而是为所有原子所共有,可以在晶体中自由运动,电子的波函数遍及整个晶体——电子气;

  • 带负电的电子气和带正电的原子实之间的库仑引力形成的结合力称为金属键,由金属键结合而成的晶体称为金属晶体;

  • 在金属晶体中要求原子的排列尽可能紧密,占有的体积尽可能小,这样才是稳定结构、金属晶体中具有最高的配位数。

    1. 面心立方(Cu、Ag、Au、Al等)配位数12
    2. 体心立方(碱金属、Mo、W)配位数8
    3. 六方密堆积结构(Zn、Cd)配位数12

在这里插入图片描述

  • 金属晶体的性质:导电性、表面有光泽

混合键和混合键型晶体

  • 对大多数晶体而言,并不只单纯存在某一种形式的化学键,而是同时存在几种形式的化合键,称这种晶体为混合键型晶体。比如:

    • Ⅲ-Ⅴ族化合物半导体(GaAs为代表)
    • Ⅱ-Ⅵ族化合物半导体(CdS为代表)等都是共价键和离子键组成的混合键。
  • 其中:在GaAs晶体中,Ga为Ⅲ族、As为Ⅴ族元素,负电性差别较小,每个Ga(或As)与周围的As(或Ga)形成饱和共价键(电子自旋力),结合成共价四面体;

  • 但是Ⅲ、Ⅴ族毕竟存在负电性差别、价电子向负电性大的As原子有所转移,As周围带一些负电荷,Ga周围带等量的正电荷,形成离子键(即库仑引力);

  • Ⅲ、Ⅴ族的混合键型以共价键为主,离子键为次;Ⅱ、Ⅵ族则相反

闪锌矿结构和金刚石结构

  • 闪锌矿结构:由两种不同的原子组成的面心立方沿空间对角线方向平移四分之一套构而成;
  • 金刚石结构:由一种原子组成的面心立方沿空间对角线方向平移四分之一套构而成。

小结

  • 晶体中化学键(包括离子键、共价键、金属键、混合键)的性质是决定晶体结构的重要因素,并且对晶体的物理性质(导电性)有很大影响。
  • 化学键的性质由组成晶体的原子的价电子的分布情况决定:
    • 价电子在两种不同原子之间完全转移,形成离子键;(NaCl)
    • 价电子在同一种原子之间共有,形成共价键;(Si、Ge)
    • 价电子为晶体中所有原子所共有,形成金属键
    • 价电子在两种不同的原子之间的部分共有和部分转移,形成混合键。(GaAs)
  • 半导体中的化学键的性质要么是典型的共价键,要么是或多或少含有共价键成分的混合键,所以共价键又称为半导体键

0.2 金刚石结构的各向异性

各向异性

  • 晶体中的某些物理、化学性质沿着不同平面往往是不同的;
  • 例如:晶体的解理性沿不同方向是不同的;晶体在化学腐蚀液中的腐蚀速度在不同方向也是不同的。

0.2.1 晶向和晶面

晶系与晶列

  • 晶体是由晶胞周期性排列而成,整块晶体中如同网格,称为晶格,组成晶体的原子或量子的重心位置称为格点,格点的总体称为点阵,在立方晶系中,通常取某一格点为坐标原点O,再沿着立方晶胞当中三个相互垂直的边,OA、OB、OC作三个坐标轴分别为 x 、 y 、 z x、y、z xyz 轴,称为晶轴,其中OA = OB = OC = a,并以 a a a 作为晶轴的长度单位,再取 O A ⃗ = a ⃗ , O B ⃗ = b ⃗ , O C ⃗ = c ⃗ \vec{OA} = \vec{a},\vec{OB} = \vec{b},\vec{OC} = \vec{c} OA =a OB =b OC =c ,基本矢量,简称基矢

在这里插入图片描述

  • 在晶格中,连接任意两个格点可以作一直线,则剩下的所有格点都必然位于和该直线平行等距的直线系上,这种线叫晶列,晶列的取向称为晶向

在这里插入图片描述

晶向的表示

  • 晶向: p ⃗ = l 1 a ⃗ + l 2 b ⃗ + l 3 c ⃗ \vec{p} = l_1\vec{a}+l_2\vec{b}+l_3\vec{c} p =l1a +l2b +l3c ,取 l 1 、 l 2 、 l 3 l_1、l_2、l_3 l1l2l3 的互质的最小整数即 l 1 : l 2 : l 3 = m : n : p l_1:l_2:l_3 = m:n:p l1:l2:l3=m:n:p m n p mnp mnp 为晶格常数,记作 [ m n p ] [mnp] [mnp],如 [ 111 ] [111] [111] 若有负数,负号写在对应指数的上方,表示相反的方向,如 [ 1 ˉ 1 ˉ 1 ˉ ] [\bar{1}\bar{1}\bar{1}] [1ˉ1ˉ1ˉ] 表示与 [ 111 ] [111] [111] 完全相反。

在这里插入图片描述

晶向的分类

  • 同类晶向用 < m n p mnp mnp> 表示
  • <100> 表示了 [ 1 ˉ 00 ] [\bar{1}00] [1ˉ00] [ 100 ] [100] [100] [ 0 1 ˉ 0 ] [0\bar{1}0] [01ˉ0] [ 010 ] [010] [010] [ 001 ] [001] [001] [ 00 1 ˉ ] [00\bar{1}] [001ˉ]
  • <111> 表示了 [ 111 ] [111] [111] [ 1 ˉ 11 ] [\bar{1}11] [1ˉ11] [ 1 1 ˉ 1 ] [1\bar{1}1] [11ˉ1] [ 11 1 ˉ ] [11\bar{1}] [111ˉ] [ 1 ˉ 1 ˉ 1 ] [\bar{1}\bar{1}1] [1ˉ1ˉ1] [ 1 1 ˉ 1 ˉ ] [1\bar{1}\bar{1}] [11ˉ1ˉ] [ 1 ˉ 1 1 ˉ ] [\bar{1}1\bar{1}] [1ˉ11ˉ] [ 1 ˉ 1 ˉ 1 ˉ ] [\bar{1}\bar{1}\bar{1}] [1ˉ1ˉ1ˉ]
  • <110> 表示了 [ 110 ] [110] [110] [ 1 ˉ 10 ] [\bar{1}10] [1ˉ10] [ 1 1 ˉ 0 ] [1\bar{1}0] [11ˉ0] [ 1 ˉ 1 ˉ 0 ] [\bar{1}\bar{1}0] [1ˉ1ˉ0] [ 101 ] [101] [101] [ 1 ˉ 01 ] [\bar{1}01] [1ˉ01] [ 10 1 ˉ ] [10\bar{1}] [101ˉ] [ 1 ˉ 0 1 ˉ ] [\bar{1}0\bar{1}] [1ˉ01ˉ] [ 011 ] [011] [011] [ 0 1 ˉ 1 ] [0\bar{1}1] [01ˉ1] [ 01 1 ˉ ] [01\bar{1}] [011ˉ] [ 0 1 ˉ 1 ˉ ] [0\bar{1}\bar{1}] [01ˉ1ˉ]

晶面族

  • 晶体中的所有原子(离子)也可以看作是位于一系列平行等距的平面系上,这些平面称为晶面族

晶面族的表示

  • 取晶面与三个晶轴的截距的倒数(防止 ∞ ∞ 无法表示)再互质取整,记作 ( h k l ) (hkl) (hkl) 称为晶面指数(也叫Miller指数)

在这里插入图片描述

  • 其中 ( h k l ) (hkl) (hkl) 表示正面 ( h ˉ k ˉ l ˉ ) (\bar{h}\bar{k}\bar{l}) (hˉkˉlˉ) 表示反面,有的晶面是分正反的,如GaAs

  • 同类晶面用 { h k l } \{hkl\} {hkl} 表示

  • 注意:在立方晶系中,晶列指数和晶面指数相同的晶向和晶面之间相互垂直。

在这里插入图片描述

  • 晶列和晶面之间是有夹角的,下面列一些常用的夹角(立方晶系)
< h k l hkl hkl> { h k l } \{hkl\} {hkl}夹角
1001000°/90°
10011045°/90°
10011154.74°
10021135.26°/65.90°
1101100°/60°/90°
11011135.26°/90°
11021130°/54.74°/73.22°/90°
1111110°/70.53°
11121119.47°/61.87°/90°

0.2.2 金刚石结构的各向异性

  • 金刚石结构沿 < 110 110 110> 和 { 100 } \{100\} {100} 晶面上的原子排列分析过程
    • 定义晶面间的垂直距离为面间距 a 4 \frac{a}{4} 4a
    • 定义单位面积上的原子个数为原子面密度 = 2 a 2 \frac{2}{a^2} a22
    • 定义单位面积上两个面之间的共价键数为共价键面密度 = 4 a 2 \frac{4}{a^2} a24
    • 定义单位长度上原子数目(< 100 100 100>)为原子线密度 = 1 a \frac{1}{a} a1
晶向和晶面面间距原子面密度晶面之间作用于每个原子的共价键数晶面之间共价键的面密度原子线密度
1000.25a 2 a 2 \frac{2}{a^2} a222 4 a 2 \frac{4}{a^2} a24 1 a \frac{1}{a} a1
1100.354a 2.83 a 2 \frac{2.83}{a^2} a22.831 2.83 a 2 \frac{2.83}{a^2} a22.83 1.41 a \frac{1.41}{a} a1.41
111双层面之间:0.433a单个{111}面: 2.31 a 2 \frac{2.31}{a^2} a22.31双层原子面间:1 2.31 a 2 \frac{2.31}{a^2} a22.31 1.17 a \frac{1.17}{a} a1.17
111双层面之内:0.144a双层原子面: 4.62 a 2 \frac{4.62}{a^2} a24.62双层原子面内:3 6.93 a 2 \frac{6.93}{a^2} a26.93不区分
  • 金刚面结构的 { 111 } \{111\} {111} 面是解理面,因为该方向的面间距最大;
  • 金刚面结构沿 { 110 } \{110\} {110} 方向化学腐蚀最快,因为沿 < 111 > <111> <111> 方向虽然面间距最大,但是受双层面的限制,综合下不如原子间距位于其次的 { 111 } \{111\} {111} 面;
  • 原子之间共价键面密度越大,面与面结合越紧密;
  • 除此之外,电子的有效质量也具有各向异性。

0.2.3 GaAs晶体极性

  • 对大多数晶体而言,同类的晶向和晶面其原子排列方式相同,物理、化学性质也相同;
  • 但对GaAs(闪锌矿结构)晶体而言,沿 [ 1 ˉ 1 ˉ 1 ˉ ] [\bar{1}\bar{1}\bar{1}] [1ˉ1ˉ1ˉ] 方向的化学腐蚀速度要快于 [ 111 ] [111] [111] 方向
    • 规定 [ 111 ] [111] [111] 方向为Ga原子面,同时 [ 1 ˉ 1 ˉ 1 ˉ ] [\bar{1}\bar{1}\bar{1}] [1ˉ1ˉ1ˉ] 为As原子面,因为As具有更强的化学活泼性,所以腐蚀速度更快;
    • GaAs晶体的解理面是 { 110 } \{110\} {110},但 { 111 } \{111\} {111} 也可以解理,因为 { 110 } \{110\} {110} 面除了共价键以外,还有离子键,没有那么容易解理;
    • <111> 晶向又称Ⅲ-Ⅴ族化合物半导体的极性轴

第一章 半导体中的电子状态

  • 电子状态:电子的能量状态

物体的状态描述

  • 经典力学中:坐标 + 动量 (体现粒子性)
    • 坐标: x 、 y 、 z x、y、z xyz 表示相对位置;
    • 动量: p ⃗ \vec{p} p 表示能量。
  • 量子力学中:能量 + 波矢(体现波动性)
    • 能量:E
    • 波矢: k ⃗ \vec{k} k 大小是波长的倒数,方向是波传播的方向(或者是波面的法线方向)

1.1 半导体中的电子状态与能带

  • 本节结构
本章线索
孤立原子中的电子状态
空间的自由电子的状态
单电子: H原子
多电子
半导体中的电子状态

1.1.1 原子中的电子状态

氢原子(单电子原子)

  • 一个原子核,一个电子

  • 能量方程: E n = − m 0 ⋅ q 4 8 ⋅ ϵ 0 2 ⋅ ℏ ⋅ 1 n 2 E_n = -\frac{m_{0}·q^4}{8·\epsilon_0^2·\hbar}·\frac{1}{n^2} En=8ϵ02m0q4n21 − 13.6 ⋅ 1 n 2 -13.6·\frac{1}{n^2} 13.6n21 (n = 1,2,3…)( ∞ ∞ 处的电势为0,n为量子数)

在这里插入图片描述

多电子的原子(核外电子的电子状态仍然不连续)

  • 四个量子数表示它的状态
    • 主量子数: n n n
    • 角量子数: l l l
    • 磁量子数: m l m_l ml
    • 自旋量子数: m s m_s ms
  • 所孤立原子核外的电子,其状态是一系列分立的能量确定值 —— 称为能级

1.1.2 自由电子的状态(1-dim)

  • 即一个原子核,周围多个电子
  • 一维下的薛定谔方程: − ℏ 2 2 m 0 -\frac{\hbar^2}{2m_0} 2m02· d 2 ψ ( x ) d x 2 \frac{d^2\psi(x)}{dx^2} dx2d2ψ(x) + V ( x ) ⋅ ψ ( x ) V(x)·\psi(x) V(x)ψ(x) = E ⋅ ψ ( x ) E·\psi(x) Eψ(x)
  • 以上方程不随时间变化,是定态薛定谔方程形式;
  • 设势场函数 V ( x ) V(x) V(x) = c o n s t const const = 0 0 0 代入方程解得: ψ ( x ) \psi(x) ψ(x) = A e i ⋅ 2 π k x Ae^{i·2\pi kx} Aei2πkx
    • 其中 ψ ( x ) \psi(x) ψ(x)为波函数; A A A为振幅; k k k 为波矢;
    • 由此还可以构造含时间的波函数: ϕ ( x , t ) \phi(x,t) ϕ(x,t) = A e i ⋅ 2 π ( k x − υ t ) Ae^{i·2\pi (kx-\upsilon t)} Aei2π(kxυt) = ψ ( x ) ⋅ e − i ⋅ 2 π υ t \psi(x)·e^{-i·2\pi \upsilon t} ψ(x)ei2πυt υ \upsilon υ 为波动(振动)频率;
  • 由粒子性: p = m 0 ⋅ υ p = m_0·\upsilon p=m0υ E = p 2 2 m 0 E = \frac{p^2}{2m_0} E=2m0p2
  • 再由德布罗意关系: p = ℏ ⋅ k p = \hbar·k p=k E = ℏ υ E = \hbar\upsilon E=υ
  • 联立可得: E = ℏ 2 k 2 2 m 0 E = \frac{\hbar^2k^2}{2m_0} E=2m02k2
    在这里插入图片描述

单电子和多电子的区别

  • 单电子:离散的能级
  • 多电子:连续

1.1.3 半导体中的电子状态与能带

分析

  • 势场的表达:在半导体中的势场很复杂,很难用数学语言表述出来;
  • 半导体中的电子是在严格周期性重复排列的原子之间排列的

半导体的薛定谔方程及其解的形式

  • 单电子近似(势场):设电子是在严格周期性重复排列并且是 固定不动(不随时间变化) 的原子核势场以及大量电子的平均势场下运动;
    • 单电子近似把研究晶体中电子状态的问题从原子核—电子的混合系统中分离出来;
    • 从多电子相互牵制的复杂的多电子问题近似成为对某一电子的作用只是一个平均势场的作用。
  • 根据单电子近似: V ( x ) = V ( x + s a ) V(x) = V(x + sa) V(x)=V(x+sa) s s s 为整数、 a a a 为晶格常数;
  • 得到方程:
    • − ℏ 2 2 m 0 -\frac{\hbar^2}{2m_0} 2m02· d 2 ψ ( x ) d x 2 \frac{d^2\psi(x)}{dx^2} dx2d2ψ(x) + V ( x ) ⋅ ψ ( x ) V(x)·\psi(x) V(x)ψ(x) = E ⋅ ψ ( x ) E·\psi(x) Eψ(x)
    • V ( x ) = V ( x + s a ) V(x) = V(x + sa) V(x)=V(x+sa)
  • V ( x ) = V ( x + s a ) V(x) = V(x + sa) V(x)=V(x+sa) 在这里没有具体形式,但可以确定的是,周期性势场下的薛定谔方程的解一定具有以下形式: ψ k ( x ) \psi_k(x) ψk(x) = U k ( x ) e i ⋅ 2 π k x U_k(x)e^{i·2\pi kx} Uk(x)ei2πkx,其中 U k ( x ) = U k ( x + s a ) U_k(x) = U_k(x+sa) Uk(x)=Uk(x+sa)布洛赫定理

讨论

  • 从方程解的形式上看:
    • 自由电子: ψ ( x ) \psi(x) ψ(x) = A e i ⋅ 2 π k x Ae^{i·2\pi kx} Aei2πkx
    • 晶体中的电子: ψ k ( x ) \psi_k(x) ψk(x) = U k ( x ) e i ⋅ 2 π k x U_k(x)e^{i·2\pi kx} Uk(x)ei2πkx
    • 对比一下这两个解,自由电子和晶体中电子的波函数在形式上很相似,都表示了波长为 1 k \frac{1}{k} k1 沿 k k k 方向传播的平面波,但晶体中电子的周期性调制振幅 U k ( x ) U_k(x) Uk(x) 取代了自由电子的恒定振幅 A A A
  • 波函数与其共轭相乘结果的讨论
    • 对自由电子: ∣ ψ ( x ) ⋅ ψ ∗ ( x ) ∣ |\psi(x)·\psi^*(x)| ψ(x)ψ(x) = A 2 A^2 A2 表明电子在空间各店等几率出现,反映了电子在空间做自由运动;
    • 对晶体中的电子: ∣ ψ k ( x ) ⋅ ψ k ∗ ( x ) ∣ |\psi_k(x)·\psi_k^*(x)| ψk(x)ψk(x) = ∣ U k ( x ) ⋅ U k ∗ ( x ) ∣ |U_k(x)·U_k^*(x)| Uk(x)Uk(x),晶体中找到该电子的几率具有周期性变化的性质,电子不再属于某一个原子,而是可以从一个原子所谓的“自由”运动到其他晶胞的对应点上,称为共有化运动(区别于电子气,电子气具有更高的自由度)
  • 布洛赫波函数中的波矢 k k k 具有量子数的作用,不同的波矢 k k k 反映了不同的共有化运动关系。

布洛赫波函数的两种极端情况

  • 准自由电子近似
    • 设想将一个自由电子 “放入” 晶体中,由于晶格的存在,电子波在传播中遭到反射,一般情况下各种反射波相互抵消,对前进波无重大影响。但当满足布拉格反射条件时,就会形成驻波。这也就得出了,定态一定为驻波的结论。
    • 在一维晶体中,其布拉格反射条件是: k = n 2 a , n = ± 1 , ± 2 , ± 3... k = \frac{n}{2a},n = ±1,±2,±3... k=2ann=±1,±2,±3...,由量子力学理论,电子的运动可以看作是波包的运动,波包的群速度就是电子运动的平均速度,设波包的频率为 υ \upsilon υ,则电子的平均速度 v = d υ d k = \frac{d\upsilon}{dk} =dkdυ,又因为 E = ℏ υ E = \hbar\upsilon E=υ,所以 v = 1 ℏ d E d k = \frac{1}{\hbar}\frac{dE}{dk} =1dkdE(电子运动平均速度的表达式)
      在这里插入图片描述
    • 上图中在 k = n 2 a , n = ± 1 , ± 2 , ± 3... k = \frac{n}{2a},n = ±1,±2,±3... k=2ann=±1±2±3...处,v = 1 ℏ d E d k = 0 \frac{1}{\hbar}\frac{dE}{dk} = 0 1dkdE=0,即切线斜率为零。
    • 这样形成了一系列的能量允许和不允许出现的区间,称为允带和禁带。
  • 紧束缚近似(从孤立原子核外电子的状态,即能级出发)
    • 紧束缚近似是视晶体为原子相互靠拢到一定程度的结果;“靠拢”会使电子做共有化运动,电子不再长时间停留在某原子的一定状态中,而只停留有限时间 δ t \delta t δt
    • 测不准原理:原子中电子的能量( δ E \delta E δE)和具有这个能量的时间( δ t \delta t δt)是测不准的;
    • 根据测不准原理,在孤立原子中, δ t → ∞ \delta t→∞ δt (电子属于原子,会在原子中一直待着) δ E → 0 \delta E→0 δE0(没有能量区间,只有 “一条线”——能级);在晶体中, δ t ↓ \delta t↓ δt(电子不再是一个原子独有) δ E ↑ \delta E↑ δE,能级展宽为能带。
      在这里插入图片描述
    • 观察上图可知,随着原子间距变小,能带渐渐展宽为能级,且外层电子较早展开;晶体中电子的状态既不同于自由电子的连续的 E − k E-k Ek 关系,也不同于孤立原子核外电子的状态(能级),而是形成一系列相间隔的允带和禁带。

布里渊区与能带

  • k = n 2 a k = \frac{n}{2a} k=2an 处( n = ± 1 , ± 2 , . . . n = ±1,±2,... n=±1,±2,...)能量出现不连续,形成了一系列相间隔的允带和禁带。
    • 第一布里渊区: − 1 2 a < k < 1 2 a -\frac{1}{2a} < k < \frac{1}{2a} 2a1<k<2a1
    • 第二布里渊区: − 1 a < k < − 1 2 a , 1 2 a < k < 1 a -\frac{1}{a} < k < -\frac{1}{2a},\frac{1}{2a} < k < \frac{1}{a} a1<k<2a12a1<k<a1
    • 第三布里渊区:…
  • 禁带出现在 k = n 2 a k = \frac{n}{2a} k=2an
  • 一个布里渊区对应于一个允带
  • 晶体中的 E − k E-k Ek 关系是周期性的,即 E ( k ) = E ( k + n a ) E(k) = E(k + \frac{n}{a}) E(k)=E(k+an)
  • 第一布里渊区又称为简约布里渊区:
    在这里插入图片描述

1.1.4 能带中的量子态数( k k k 的取值和数量)

k k k 的连续性

  • 1-dim晶体中,使用伯恩-卡曼边界条件(循环边界条件)
    • ψ k ( 0 ) = ψ k ( L ) \psi_k(0) = \psi_k(L) ψk(0)=ψk(L) L = N ⋅ a L = N·a L=Na
    • 可以推出: U k ( 0 ) = U k ( L ) ⋅ e i 2 π k L U_k(0) = U_k(L)·e^{i2\pi kL} Uk(0)=Uk(L)ei2πkL
    • 又因为首尾相连, U k ( 0 ) = U k ( L ) U_k(0) = U_k(L) Uk(0)=Uk(L)
    • e i 2 π k L = 1 e^{i2\pi kL} = 1 ei2πkL=1,即: 2 π k L = 2 π n 2\pi kL = 2\pi n 2πkL=2πn n = ± 1 , ± 2 , . . . n = ±1,±2,... n=±1,±2,...
    • 最终得到: k = n L k = \frac{n}{L} k=Ln
    • 结论推广至三维晶系: k x , y , z = n x , y , z L 1 , 2 , 3 k_{x,y,z} = \frac{n_{x,y,z}}{L_{1,2,3}} kx,y,z=L1,2,3nx,y,z n = ± 1 , ± 2 , . . . n = ±1,±2,... n=±1,±2,...
  • 由以上推导可知,波矢 k k k 的取值是不连续的,是量子化的,且 k k k 的取值在 k k k 空间是均匀分布的。

k k k 的取值

  • 在1-dim晶体中,一个布里渊区的长度为 1 a \frac{1}{a} a1,一个允许的 k k k 的取值所占的 “长度” 为 1 L \frac{1}{L} L1
    • k = n L , k i = i L , k i + 1 = i + 1 L , δ k = k i + 1 − k i = 1 L k = \frac{n}{L},k_i = \frac{i}{L},k_{i+1} = \frac{i+1}{L},\delta k = k_{i+1} - k_i = \frac{1}{L} k=Lnki=Liki+1=Li+1δk=ki+1ki=L1
  • 在一个布里渊区中, k k k 的取值 = 1 a ÷ 1 L \frac{1}{a} ÷ \frac{1}{L} a1÷L1 = L a \frac{L}{a} aL = N N N
  • 也就是说,每个布里渊区(也就是一个能带)共有N个k的取值,它们均匀地分布在k空间,每一个允许的k对应于一个能量状态,k定了,能量就确定了(能级)即每个布里渊区中有N个能级,因为每一个能级上可以容纳自旋相反的两个电子,所以每个允带中最多可容纳2N个电子。
    • N是晶体的固体物理学元胞数,也就是总原子数;元胞是晶格的最小周期单元,只反映周期性,不反映各种对称性,一个元胞平均包含一个格点。
    • 每个允带中,电子的能量也是不连续的,允带是由许多密集的能级组成的,因为N很大(~ 1 0 23 ⋅ c m − 3 10^{23} ·cm^{-3} 1023cm3),而一个允带的密度约几个电子伏特,因此能级间隔相当小,近似连续,称为准连续。

1.1.5 导体半导体和绝缘体的能带

  • 固体物理认为:固体能够导电是因为在外电场的作用下,其(固体内部)电子的能量状态和分布情况发生了改变。

满带中的电子在外电场作用下不参与导电

  • 从能带图看,满带的所有能级都被自旋相反的电子填充。
    在这里插入图片描述
  • E − k E - k Ek 关系图分析:

在这里插入图片描述

  • 如图所示,外电场 ϵ \epsilon ϵ 的对电子做功: d E = q ϵ d s = q ϵ v d t = q ϵ 1 ℏ d E d k d t dE = q\epsilon ds = q\epsilon vdt = q\epsilon\frac{1}{\hbar}\frac{dE}{dk}dt dE=qϵds=qϵvdt=qϵ1dkdEdt,整理可得: d k d t = q ϵ ℏ \frac{dk}{dt} = \frac{q\epsilon}{\hbar} dtdk=qϵ
    • d k d t = q ϵ ℏ \frac{dk}{dt} = \frac{q\epsilon}{\hbar} dtdk=qϵ,左边的含义是电子在 k k k 空间的运动速度,右边是定值,这说明电子在 k k k 空间做匀速运动;
    • 电子从 A A A 端流出,又从 A ′ A' A 端注入;
  • 总体上看,因为电子的运动没有改变能量状态和布里渊区内的分布情况,因此满带电子不导电。

半满带中的电子在外电场作用下可以导电

在这里插入图片描述

  • 半满带中的电子在外电场的作用下,能量状态和分布情况都发生了改变,因此参与导电。

导体、半导体和绝缘体的能带

在这里插入图片描述

  • 导体的能带中总有一个半满带存在
  • 绝缘体能带和 T = 0 K T = 0K T=0K 时半导体的能带是相似的
  • 绝缘体的能带宽度(Energy gap)较大, E g ≈ 6 − 7 e V E_g ≈ 6-7 eV Eg67eV,半导体的 E g E_g Eg 1 e V 1 eV 1eV 左右
300K E g ( e V ) E_g (eV) Eg(eV)
Si1.12
Ge0.67
GaAs1.43

本征激发

  • 在半导体中,当外界条件变化时,如: T ↑ T↑ T ,在满带顶部的少量电子可以获得能量,跃迁到上边的空带的底部,跃迁的少数电子和留在满带的大量电子都参与导电,所以常温下半导体具有一定的导电能力,而绝缘体因禁带宽度较大,无法实现这种跃迁。

  • 通常把满带中,少量电子跃迁后,剩余的大量电子对电流的贡献用少量的带正电的准粒子加以等效描述——称这种准粒子为空穴

  • 本征半导体,指纯净的、不含有任何杂质和缺陷的半导体——是一种理想情况

  • T = 0 K T = 0K T=0K 时的半导体能带:
    在这里插入图片描述

    • E c E_c Ec 导带电子能量最小值
    • E v E_v Ev 价带电子能量最大值
    • 计算 E g E_g Eg 思路:先求导带极小值点和极小值,再求价带极大值点极大值,二者相减得到 E g E_g Eg
  • 本征激发:价带电子获得能量跃迁进入导带成为导带电子的过程。

从晶体结构角度看本征激发

在这里插入图片描述

  • 电子挣脱共价键束缚做 “自由” 运动
  • 禁带宽度在这里就是 “挣脱” 共价键所需要的最低能量,原先有电子的地方形成空穴。
  • 本征激发的特征是:导带电子与价带空穴是成对出现的。

1.2 半导体中电子的运动和有效质量

1.2.1 半导体中电子的 E − k E-k Ek 关系

在这里插入图片描述

  • 分析上图可知,只有位于 E − k E-k Ek 曲线的极值点处的电子才有可能对半导体性质有贡献,因此只需要知道波矢 k k k 取0值附近的 E − k E-k Ek 关系即可。

导带极小值

  • 设导带极小值点位于 k = 0 k = 0 k=0 处(即布里渊区中心位置),极小值 E c E_c Ec k = 0 k = 0 k=0 附近,将 E − k E-k Ek 关系用泰勒级数展开: E ( k ) = E c + ( d E d k ) ∣ k = 0 ⋅ k + 1 2 ( d 2 E d k 2 ) ∣ k = 0 ⋅ k 2 + . . . E(k) = E_c + (\frac{dE}{dk})|_{k = 0}·k + \frac{1}{2}(\frac{d^2E}{dk^2})|_{k = 0}·k^2 + ... E(k)=Ec+(dkdE)k=0k+21(dk2d2E)k=0k2+...
  • 因为 k k k 很小,只取前三项,且 ( d E d k ) ∣ k = 0 = 0 (\frac{dE}{dk})|_{k = 0} = 0 (dkdE)k=0=0(极值点条件)
  • 整理得到: E ( k ) − E c = 1 2 ( d 2 E d k 2 ) ∣ k = 0 ⋅ k 2 E(k)-E_c = \frac{1}{2}(\frac{d^2E}{dk^2})|_{k = 0}·k^2 E(k)Ec=21(dk2d2E)k=0k2
  • 对比自由电子: E ( k ) = ℏ 2 k 2 2 m 0 E(k) = \frac{\hbar^2k^2}{2m_0} E(k)=2m02k2
  • 1 m n ∗ = 1 ℏ 2 ( d 2 E d k 2 ) ∣ k = 0 \frac{1}{m_n^*} = \frac{1}{\hbar^2}(\frac{d^2E}{dk^2})|_{k = 0} mn1=21(dk2d2E)k=0 ,则导带底的 E − k E- k Ek 关系: E ( k ) − E c = ℏ 2 k 2 2 m n ∗ E(k)-E_c = \frac{\hbar^2k^2}{2m_n^*} E(k)Ec=2mn2k2
  • m n ∗ m_n^* mn 称为导带电子的有效质量,因为 E ( k ) > E c E(k)>E_c E(k)>Ec,所以 m n ∗ > 0 m_n^* > 0 mn>0

价带极大值

  • 设价带极大值(价带顶) E v E_v Ev 位于布里渊区中心( k = 0 k = 0 k=0)用泰勒级数展开,同上得: E ( k ) − E v = ℏ 2 k 2 2 m n ∗ E(k)-E_v = \frac{\hbar^2k^2}{2m_n^*} E(k)Ev=2mn2k2
  • m n ∗ m_n^* mn 称为价带电子的有效质量,因为 E ( k ) < E v E(k)<E_v E(k)<Ev,所以 m n ∗ < 0 m_n^* < 0 mn<0
  • 晶体中电子引入了有效质量 m n ∗ m_n^* mn 之后,其 E − k E- k Ek 关系和自由电子相似,只是用的是有效质量 m n ∗ m_n^* mn

1.2.2 半导体中电子的平均速度

  • ① v = 1 ℏ d E d k = \frac{1}{\hbar}\frac{dE}{dk} =1dkdE
  • ② 自由电子: E ( k ) = ℏ k 2 2 m 0 E(k) = \frac{\hbar k^2}{2m_0} E(k)=2m0k2
  • 联立①②得:v = ℏ k m 0 = \frac{\hbar k}{m_0} =m0k
  • ③ 半导体中电子: E ( k ) − E c = ℏ 2 k 2 2 m n ∗ E(k)-E_c = \frac{\hbar^2k^2}{2m_n^*} E(k)Ec=2mn2k2
  • 联立①③得:v = ℏ k m n ∗ \frac{\hbar k}{m_n^*} mnk
  • 二者形式上相似,但半导体中电子 v 的符号与 k k k m n ∗ m_n^* mn 同时有关

在这里插入图片描述

1.2.3 半导体中电子的加速度

  • 设半导体中对电子施加一个外力 f 外 f_外 f
  • d E = f 外 ⋅ d s = f 外 v d t = f 外 ⋅ 1 ℏ d E d k d t dE = f_外·ds = f_外vdt = f_外·\frac{1}{\hbar}\frac{dE}{dk}dt dE=fds=fvdt=f1dkdEdt
  • 消掉上式 d E dE dE,得到: f 外 ℏ = d k d t \frac{f_外}{\hbar} = \frac{dk}{dt} f=dtdk,该式含义是,在外力作用下波矢 k k k 随时间变化
  • 根据加速度的定义式: a = d v d t = d d t ( 1 ℏ d E d k ) = 1 ℏ d 2 E d k d t = 1 ℏ d 2 E d k 2 ⋅ d k d t = f 外 1 ℏ 2 d 2 E d k 2 = f 外 m n ∗ a = \frac{dv}{dt} = \frac{d}{dt}(\frac{1}{\hbar}\frac{dE}{dk}) = \frac{1}{\hbar}\frac{d^2E}{dkdt} = \frac{1}{\hbar}\frac{d^2E}{dk^2}·\frac{dk}{dt} = f_外\frac{1}{\hbar^2}\frac{d^2E}{dk^2} = \frac{f_外}{m_n^*} a=dtdv=dtd(1dkdE)=1dkdtd2E=1dk2d2Edtdk=f21dk2d2E=mnf,得: f 外 = m n ∗ a f_外 = m_n^*a f=mna
  • 对比牛顿第二定律: Σ F = m a ΣF = ma ΣF=ma
  • 引入有效质量 m n ∗ m_n^* mn 后, E − k , v − k , a − k E-k,v-k,a-k Ekvkak 关系形式不变,总是以 m n ∗ m_n^* mn 取代 m m m

1.2.4 有效质量的意义

  • f 外 = m n ∗ a f_外 = m_n^*a f=mna f 外 f_外 f 指的是晶体中外电场的力
  • 晶体中电子受力 = f 外 f_外 f + 原子核作用力 + 其他作用力
  • 另外两种力很复杂,找出具体形式很难,但可以用 m n ∗ m_n^* mn 加以概括
  • 有效质量概括了晶格内部势场的作用,使得研究半导体中电子运动规律时可以不涉及内部势场的作用,从而将外力和加速度直接联系起来,而 m n ∗ m_n^* mn 用实验测出

1.2.5 能带宽度对有效质量和电子运动速度的影响

在这里插入图片描述

  • 内层电子占据的能带较窄,电子的有效质量较大,在外力作用下不易运动;外层电子占据的能带较宽,电子的有效质量较小,在外力作用下可获得较大的加速度。

1.3 本征半导体的导电机构 空穴

价带中一个 k k k 状态产生跃迁的情形

在这里插入图片描述

  • 上图中波矢 k k k 的变化一致
    • 电子: A → B → C → D A→B→C→D ABCD
    • 空态: A → B → C → D A→B→C→D ABCD
  • 设价带(一个 k k k 为空态)电子总电流为 J J J
  • 注:这里的电流指的是电流密度,单位面积上的电流强度
  • J = J = J= 价带( k k k 为空态) 剩余电子的总电流
  • 设想将一个电子填入该空态,该电子在外电场 ϵ \epsilon ϵ
    的作用下运动所产生的电流等于该电子电荷量 − q -q q 乘以电子的速度 v ( k ) (k) (k) ,即 − q -q qv ( k ) (k) (k),因为满带电子不导电,所以价带 ( k k k为空态)剩余电子的总电流 + ( − q -q qv ( k ) (k) (k))= 0 0 0
  • 价带(一个 k k k 为空态)剩余电子的总电流 J J J = q q qv ( k ) (k) (k)

空穴是一个等效概念

  • 空穴具有与电子电荷量大小相等符号相反的 + q +q +q 电荷

  • 空穴的共有化运动速度就是价带顶附近空态中电子的共有化运动速度

  • 空穴的有效质量是一个正的常数 m p ∗ m_p^* mp

  • 其值与价带顶附近空态电子的有效质量 m n ∗ m_n^* mn 大小相等,符号相反,即 m p ∗ m_p^* mp = − m n ∗ -m_n^* mn

    • E ( k ) − E c = ℏ 2 k 2 2 m n ∗ E(k)-E_c = \frac{\hbar^2k^2}{2m_n^*} E(k)Ec=2mn2k2
    • E ( k ) − E v = ℏ 2 k 2 2 m n ∗ E(k)-E_v = \frac{\hbar^2k^2}{2m_n^*} E(k)Ev=2mn2k2
  • 空穴浓度 = 价带顶附近空态的浓度

  • 空穴的概念和有效质量的概念都是半导体中电子的复杂问题的等效描述,引入它们后,使得研究和讨论半导体的现象和机理时更加容易

  • 本征半导体中的导电机构电子数 = 空穴数,同时参与导电,并且以扩散或漂移方式运动。通常把荷载电流的粒子也就是电子和空穴统称为载流子。

1.4 回旋共振

  • 回旋共振测出 m ∗ m^* m,从而推导出能带结构;

k k k 空间等能面

  • 一维下的能带扩展到三维就成了等能面
  • 若令 E ( k ) = E(k) = E(k)= 常数,在 k x , k y , k z k_x,k_y,k_z kxkykz 坐标中构成封闭的球面——等能面
  • E ( k ) − E c = ℏ 2 2 m n ∗ ( k x 2 + k y 2 + k z 2 ) E(k) - E_c = \frac{\hbar^2}{2m_n^*}(k_x^2 + k_y^2+k_z^2) E(k)Ec=2mn2(kx2+ky2+kz2)
  • 具有球形等能面的 E − k E-k Ek 关系,其电子的有效质量是各向同性的。实际晶体中导带最小值不一定在布里渊区中心( k = 0 k = 0 k=0 处)且 m n ∗ m_n^* mn 可以是各项异性的( E − k E-k Ek 关系沿不同的方向不同)
  • 设导带极小值位于 k 0 k_0 k0 处,适当选取 k x , k y , k z k_x,k_y,k_z kxkykz 轴,并且令 m x ∗ , m y ∗ , m z ∗ m_x^*,m_y^*,m_z^* mxmymz 为沿三轴方向上的有效质量,将 E − k E-k Ek 关系在 k 0 k_0 k0 附近用泰勒展开,忽略高次项,得到 E ( k ) − E c = ℏ 2 ( k x − k x 0 ) 2 2 m x ∗ + ℏ 2 ( k y − k y 0 ) 2 2 m y ∗ + ℏ 2 ( k z − k z 0 ) 2 2 m z ∗ E(k) - E_c = \frac{\hbar^2(k_x-k_{x_0})^2}{2m_x^*} + \frac{\hbar^2(k_y-k_{y_0})^2}{2m_y^*}+\frac{\hbar^2(k_z-k_{z_0})^2}{2m_z^*} E(k)Ec=2mx2(kxkx0)2+2my2(kyky0)2+2mz2(kzkz0)2,其中 1 m x , y , z ∗ = 1 ℏ 2 ( ∂ 2 E ∂ k x , y , z 2 ) ∣ k 0 \frac{1}{m_{x,y,z}^*} = \frac{1}{\hbar^2}(\frac{\partial^2E}{\partial k_{x,y,z}^2})|_{k_0} mx,y,z1=21(kx,y,z22E)k0
  • 以上方程变形得到: ( k x − k x 0 ) 2 2 m x ∗ ℏ ( E − E c ) + ( k y − k y 0 ) 2 2 m y ∗ ℏ ( E − E c ) + ( k z − k z 0 ) 2 2 m z ∗ ℏ ( E − E c ) = 1 \frac{(k_x - k_{x_0})^2}{\frac{2m_x^*}{\hbar}(E-E_c)} + \frac{(k_y - k_{y_0})^2}{\frac{2m_y^*}{\hbar}(E-E_c)}+\frac{(k_z - k_{z_0})^2}{\frac{2m_z^*}{\hbar}(E-E_c)} = 1 2mx(EEc)(kxkx0)2+2my(EEc)(kyky0)2+2mz(EEc)(kzkz0)2=1,该方程是一个椭球方程
  • 当椭球的 a , b , c a,b,c abc 参数任意两个相等时,就成了旋转椭球,形成旋转椭球等能面(如 S i 、 G e Si、Ge SiGe
  • 具有旋转椭球等能面的 E − k E-k Ek 关系,其电子的有效质量是各向异性的

在这里插入图片描述

  • 16
    点赞
  • 74
    收藏
    觉得还不错? 一键收藏
  • 4
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值