绪论和预备知识
0.0 绪论
《半导体物理》讲了什么?
研究半导体材料受外界因素变化的原因和规律
什么是半导体?
- 按电阻率划分:
导体 | 半导体 | 绝缘体 | |
---|---|---|---|
电阻率 ρ \rho ρ( Ω ⋅ c m \Omega·cm Ω⋅cm) | < 1 0 − 3 10^{-3} 10−3 | 1 0 − 3 − 1 0 9 10^{-3}-10^{9} 10−3−109 | > 1 0 9 10^{9} 109 |
-
此外,半导体具有如下特性:
- 温度的升高可以显著提升半导体的导电能力
- 微量杂质的含量可以显著改变半导体的导电能力
- 光照可以显著改变半导体的导电能力
- 磁场和电场的改变可以显著改变半导体的导电能力
-
例如:100万个Si原子中,掺入一个杂质原子(99.999%纯度硅),在室温下(27°C,T = 300K )电阻率由214,000 Ω \Omega Ω·cm 降低至 0.2 Ω \Omega Ω·cm
-
半导体的定义:电阻率容易受光、热、磁、电及微量杂质含量变化而变化的材料。
0.1 化学键和晶体结构
0.1.1 基本概念
晶体
- 晶体具有一定规则的外形和固定的熔点,组成晶体的离子或原子(在较大的范围内,至少是 μ m \mu m μm 数量级)都是按照一定的方式有规则地排列而成的(长程有序)。
- 非晶体无规则外形和固定熔点,内部也无长程有序,但是短程有序。
- 单晶是原子或离子的一种排列方式贯穿始终,而多晶由许多小晶粒杂乱堆积而成。
化学键
- 化学键:组成晶体的原子或离子之间的结合力
原子的负电性
- 原子的负电性:衡量原子对核外电子束缚能力的强弱的量,包括电离能和亲合能
- 电离能:原子失去价电子需要的能量
- 亲合能:由中性原子获取一个价电子成为负离子所释放的能量
- 原子的负电性 = (电离能 + 亲合能)× 0.18(使Li的亲合能为1)
- 负电性反映了原子相互键合时最外层电子得失的难易程度
- 负电性大 ⇒ 电离能大或亲合能大:电离能大说明电子很难挣脱原子束缚;亲合能大说明电子有较大能力获得外来电子。
- 结论:价电子总是向负电性大的原子转移。
ⅠA | ⅡA | ⅢB | ⅣB | ⅤB | ⅥB | ⅦB |
---|---|---|---|---|---|---|
Li1.0 | Be1.5 | B2.0 | C2.5 | N3.0 | O3.5 | F4.0 |
Na0,9 | Mg1.2 | Al1.5 | Si1.8 | P2.1 | S2.5 | Cl3.0 |
K0.8 | Ca1.0 | Ga1.5 | Ge1.8 | As2.0 | Se2,4 | Br2.8 |
In1.5 | Sn1.8 | Sb1.9 | Te2.1 | I2.6 |
- 同一行:左👉右,负电性↑,非金属性↑
- 同一列:上👉下,负电性↓,金属性↑
0.1.2 化学键的类型和晶体结构的规律
离子键和离子晶体(以NaCl晶体为例)
- ⅠA 族元素具有最低负电性,容易失去电子( N a + Na^{+} Na+);
- ⅦB 族元素具有最高负电性,容易获得电子( C l − Cl^{-} Cl−);
- 由离子键结合而成的晶体称为离子晶体( N a C l NaCl NaCl 晶体);
- 任意一个离子的最近邻一定是带相反电荷的另一种离子,这是静电引力的结果。(即 N a + Na^{+} Na+和 C l − Cl^{-} Cl−通过静电引力形成 N a C l NaCl NaCl 晶体)
- 配位数:晶体中任一原子/离子周围最近邻的原子/离子数,配位数的大小反映晶体中离子或原子排列的密集程度。(由上图可知 N a C l NaCl NaCl 晶体配位数为6)
晶体结构的基本单元 ——— 晶胞
- 晶胞:反映了晶体的周期性和对称性,整个晶体是由晶胞周期性重复排列形成的。
- 上图为 N a C l NaCl NaCl 晶体的晶胞结构为面心立方(只看 N a + Na^{+} Na+或 C l − Cl^{-} Cl−);
- 表述: N a C l NaCl NaCl 晶体由 N a + Na^{+} Na+和 C l − Cl^{-} Cl−组成的面心立方套构而成;
- 在 N a C l NaCl NaCl 晶体中, N a Na Na原子的的价电子已经完全转移到 C l Cl Cl原子的最外层轨道上,它们呗束缚在各个离子上,不能自由运动,因此离子晶体一般是绝缘体。
共价键与共价晶体(金刚石、Si、Ge)
- 同种原子组成的晶体,原子之间无负电性差异,因此无价电子在原子间的转移,而是两个原子之间依靠共有一对自旋相反配对的价电子。它们的电子云在两个原子之间相互重叠而具有较高的密度(因而交叠处略带负电),带正电的原子实靠两个电子间的带负电的电子云之间所形成的结合力,将原子结合成晶体。
- 电子云:用颜色的深度表示电子的分布密度(或出现的概率),像云一样。
- 依靠一对自旋相反配对形成的结合力称为共价键。由共价键结合而形成的晶体称为共价晶体。如金刚石(C)、Si、Ge都是典型的共价晶体。
- 共价键的特点:饱和性、方向性
- 饱和性:一个原子与周围原子之间形成的共价键数目是有限制的,即不会无限和其他原子形成共价键;
- 方向性:原子之间形成共价键时,电子云的相互重叠在空间的一定方向(共价键方向)上具有高密度。
方向性的量子力学解释
- 微观粒子的波函数有四种:包括球面对称的 Ψ S \Psi_S ΨS ,关于三维坐标系的三个轴对称的 Ψ X \Psi_X ΨX、 Ψ Y \Psi_Y ΨY、 Ψ Z \Psi_Z ΨZ,电子的波函数是四种形式的线性叠加。 Ψ i \Psi_i Ψi( i i i = 1,2,3,4) = a i Ψ S + b i Ψ X + c i Ψ Y + d i Ψ Z a_i\Psi_S+b_i\Psi_X+c_i\Psi_Y+d_i\Psi_Z aiΨS+biΨX+ciΨY+diΨZ
- 按照系统能量最低原则可确定 a i 、 b i 、 c i 、 d i a_i、b_i、c_i、d_i ai、bi、ci、di 解出 Ψ i \Psi_i Ψi, ∣ Ψ i ∗ Ψ i ∣ |\Psi_i^*\Psi_i| ∣Ψi∗Ψi∣最大值的方向即共价键的方向。
- 以上过程对应了轨道杂化
Si晶体共价键结构
- 上图中5个Si原子组成共价四面体,共价键之间的夹角为109°28′;
- 在共价四面体中,若把原子放大为球状直到有两个原子彼此相切,球的半径称为共价半径,原子间距 = 2 × 共价半径
金刚石(C) | Si | Ge | |
---|---|---|---|
共价半径( A ˚ Å A˚) | 0.77 | 1.17 | 1.22 |
最近邻原子间距 | 1.54 | 2.34 | 2.44 |
- 共价四面体不能像 N a C l NaCl NaCl 晶胞那样平移得到金刚石晶体;
金刚石结构晶胞
- 金刚石立方晶系
- 金刚石结构的晶胞是正立方体(如上图所示),八个顶点上各有一个原子,六个面心上各有一个原子,四条空间体对角线1/4位置处4个(靠上下各两个)原子;
- 晶格常数:立方晶系的边长晶格常数,记作a;
- 金刚石结构的原子密度 = 8 × 1 8 + 6 × 1 2 + 4 a 3 \frac{8×{\frac{1}{8}}+6×{\frac{1}{2}}+4}{a^3} a38×81+6×21+4 分子为原子数,分母为立方晶系的体积。将立方晶系切割成8个小立方体;顶点上原子8个立方体各占一个,8个立方晶系共用一个原子,因此 × 1 8 × \frac{1}{8} ×81;面心原子,6个面每个面各一个原子,两个立方晶系共用一个面,因此 × 1 2 × \frac{1}{2} ×21 ;
- 金刚石晶胞就是由上面8个小立方体中的4个组成,即上层四个立方体对角的两个立方体和下层四个立方体的另两个对角方向的两个立方体。
- 所谓金刚石结构,也就是由两个相同原子组成的面心立方,沿空间对角线方向相互平移1/4对角线长度套构而成的。
原子序数 | 共价半径Å | 最近邻原子间距 Å | 相对硬度 | 电阻率 (300K Ω ⋅ c m \Omega·cm Ω⋅cm) | 熔点℃ | |
---|---|---|---|---|---|---|
金刚石 | 6 | 0.77 | 1.54 | 10 | ~ 1 0 18 10^{18} 1018 | 3800 |
Si | 14 | 1.17 | 2.34 | 7 | ~2.3× 1 0 5 10^{5} 105 | 1420 |
Ge | 32 | 1.22 | 2.44 | 6 | ~47 | 941 |
- 由Ⅳ族元素所构成晶体的导电性,金刚石(绝缘体)👉 S i 、 G e 、 S n ( < 13 ℃ 灰 锡 ) ‾ \underline{Si、Ge、Sn(<13℃ 灰锡)} Si、Ge、Sn(<13℃灰锡)(半导体)👉 S n ( > 13 ℃ 白 锡 ) 、 P b ‾ \underline{Sn(>13℃ 白锡)、Pb} Sn(>13℃白锡)、Pb(导体)
- Si、Ge都是金刚石结构的晶胞
金属键和金属晶体
-
ⅠⅡⅢ族元素具有较低的负电性,对价电子的束缚能力弱,在结合成晶体时原先分属于各个原子的价电子不再属于某一个特定原子,而是为所有原子所共有,可以在晶体中自由运动,电子的波函数遍及整个晶体——电子气;
-
带负电的电子气和带正电的原子实之间的库仑引力形成的结合力称为金属键,由金属键结合而成的晶体称为金属晶体;
-
在金属晶体中要求原子的排列尽可能紧密,占有的体积尽可能小,这样才是稳定结构、金属晶体中具有最高的配位数。
- 面心立方(Cu、Ag、Au、Al等)配位数12
- 体心立方(碱金属、Mo、W)配位数8
- 六方密堆积结构(Zn、Cd)配位数12
- 金属晶体的性质:导电性、表面有光泽
混合键和混合键型晶体
-
对大多数晶体而言,并不只单纯存在某一种形式的化学键,而是同时存在几种形式的化合键,称这种晶体为混合键型晶体。比如:
- Ⅲ-Ⅴ族化合物半导体(GaAs为代表)
- Ⅱ-Ⅵ族化合物半导体(CdS为代表)等都是共价键和离子键组成的混合键。
-
其中:在GaAs晶体中,Ga为Ⅲ族、As为Ⅴ族元素,负电性差别较小,每个Ga(或As)与周围的As(或Ga)形成饱和共价键(电子自旋力),结合成共价四面体;
-
但是Ⅲ、Ⅴ族毕竟存在负电性差别、价电子向负电性大的As原子有所转移,As周围带一些负电荷,Ga周围带等量的正电荷,形成离子键(即库仑引力);
-
Ⅲ、Ⅴ族的混合键型以共价键为主,离子键为次;Ⅱ、Ⅵ族则相反
闪锌矿结构和金刚石结构
- 闪锌矿结构:由两种不同的原子组成的面心立方沿空间对角线方向平移四分之一套构而成;
- 金刚石结构:由一种原子组成的面心立方沿空间对角线方向平移四分之一套构而成。
小结
- 晶体中化学键(包括离子键、共价键、金属键、混合键)的性质是决定晶体结构的重要因素,并且对晶体的物理性质(导电性)有很大影响。
- 化学键的性质由组成晶体的原子的价电子的分布情况决定:
- 价电子在两种不同原子之间完全转移,形成离子键;(NaCl)
- 价电子在同一种原子之间共有,形成共价键;(Si、Ge)
- 价电子为晶体中所有原子所共有,形成金属键;
- 价电子在两种不同的原子之间的部分共有和部分转移,形成混合键。(GaAs)
- 半导体中的化学键的性质要么是典型的共价键,要么是或多或少含有共价键成分的混合键,所以共价键又称为半导体键。
0.2 金刚石结构的各向异性
各向异性
- 晶体中的某些物理、化学性质沿着不同平面往往是不同的;
- 例如:晶体的解理性沿不同方向是不同的;晶体在化学腐蚀液中的腐蚀速度在不同方向也是不同的。
0.2.1 晶向和晶面
晶系与晶列
- 晶体是由晶胞周期性排列而成,整块晶体中如同网格,称为晶格,组成晶体的原子或量子的重心位置称为格点,格点的总体称为点阵,在立方晶系中,通常取某一格点为坐标原点O,再沿着立方晶胞当中三个相互垂直的边,OA、OB、OC作三个坐标轴分别为 x 、 y 、 z x、y、z x、y、z 轴,称为晶轴,其中OA = OB = OC = a,并以 a a a 作为晶轴的长度单位,再取 O A ⃗ = a ⃗ , O B ⃗ = b ⃗ , O C ⃗ = c ⃗ \vec{OA} = \vec{a},\vec{OB} = \vec{b},\vec{OC} = \vec{c} OA=a,OB=b,OC=c,基本矢量,简称基矢。
- 在晶格中,连接任意两个格点可以作一直线,则剩下的所有格点都必然位于和该直线平行等距的直线系上,这种线叫晶列,晶列的取向称为晶向。
晶向的表示
- 晶向: p ⃗ = l 1 a ⃗ + l 2 b ⃗ + l 3 c ⃗ \vec{p} = l_1\vec{a}+l_2\vec{b}+l_3\vec{c} p=l1a+l2b+l3c,取 l 1 、 l 2 、 l 3 l_1、l_2、l_3 l1、l2、l3 的互质的最小整数即 l 1 : l 2 : l 3 = m : n : p l_1:l_2:l_3 = m:n:p l1:l2:l3=m:n:p , m n p mnp mnp 为晶格常数,记作 [ m n p ] [mnp] [mnp],如 [ 111 ] [111] [111] 若有负数,负号写在对应指数的上方,表示相反的方向,如 [ 1 ˉ 1 ˉ 1 ˉ ] [\bar{1}\bar{1}\bar{1}] [1ˉ1ˉ1ˉ] 表示与 [ 111 ] [111] [111] 完全相反。
晶向的分类
- 同类晶向用 < m n p mnp mnp> 表示
- <100> 表示了 [ 1 ˉ 00 ] [\bar{1}00] [1ˉ00]、 [ 100 ] [100] [100]、 [ 0 1 ˉ 0 ] [0\bar{1}0] [01ˉ0]、 [ 010 ] [010] [010]、 [ 001 ] [001] [001]、 [ 00 1 ˉ ] [00\bar{1}] [001ˉ];
- <111> 表示了 [ 111 ] [111] [111]、 [ 1 ˉ 11 ] [\bar{1}11] [1ˉ11]、 [ 1 1 ˉ 1 ] [1\bar{1}1] [11ˉ1]、 [ 11 1 ˉ ] [11\bar{1}] [111ˉ]、 [ 1 ˉ 1 ˉ 1 ] [\bar{1}\bar{1}1] [1ˉ1ˉ1]、 [ 1 1 ˉ 1 ˉ ] [1\bar{1}\bar{1}] [11ˉ1ˉ]、 [ 1 ˉ 1 1 ˉ ] [\bar{1}1\bar{1}] [1ˉ11ˉ]、 [ 1 ˉ 1 ˉ 1 ˉ ] [\bar{1}\bar{1}\bar{1}] [1ˉ1ˉ1ˉ];
- <110> 表示了 [ 110 ] [110] [110]、 [ 1 ˉ 10 ] [\bar{1}10] [1ˉ10]、 [ 1 1 ˉ 0 ] [1\bar{1}0] [11ˉ0]、 [ 1 ˉ 1 ˉ 0 ] [\bar{1}\bar{1}0] [1ˉ1ˉ0]、 [ 101 ] [101] [101]、 [ 1 ˉ 01 ] [\bar{1}01] [1ˉ01]、 [ 10 1 ˉ ] [10\bar{1}] [101ˉ]、 [ 1 ˉ 0 1 ˉ ] [\bar{1}0\bar{1}]