A
结果和评价
我的想法与思路
- 直接暴力,然后造数据跑跑发现没有问题就没有想这么多了。
B
结果和评价
- 结果
10
,时间
30
+
30
评价:非常不应该
我的想法与思路
- 我们通过一些不必要的复杂方法得到了三个关系
- 又暂时没有想到正解打算切点分
- 之后可以过85分。可是作死切了一个暴力,同时调试的时候代码没有还原,结果只有10分。。QAQ
反思
- 时间安排要好,我在这一题85分的代码已经写好了以后花了太多的时间瞎调试,最后没有检验导致错误。
- 暴力的正确性很重要,同时没有太大的必要可以不去敲暴力的。
正确的思路
- 我们可以得到这样的一个样子
A−B−−−−−−...C−−D
设
′−′
长度 为
x
- 我们可以发现枚举了x之后
A,B
相对位置固定,
C,D
相对位置固定这样我们可以枚举每个
A,B
的合法
C,D
。
- 这样问题就可以
n∗n/9
的处理了。
const int M=15005;
int A[M],B[M],C[M],D[M],cnt[M],h[3*M],n,m;
int main(){
rd(n);rd(m);
for(int i=1;i<=m;i++)rd(h[i]),cnt[h[i]]++;
for(int x=1,len,res;x<=n/9;x++) {
len=1+9*x,res=0;
for(int a,b,c,d=1+len;d<=n;d++){
a=d-len;
b=a+2*x;
c=d-x;
res+=cnt[a]*cnt[b];
C[c]+=res*cnt[d];
D[d]+=res*cnt[c];
}
res=0;
for(int a=n-len,b,c,d;a>=1;a--){
b=a+2*x;
c=a+8*x+1;
d=c+x;
res+=cnt[c]*cnt[d];
A[a]+=res*cnt[b];
B[b]+=res*cnt[a];
}
}
for(int i=1;i<=m;i++){
int x=h[i];
pt(A[x]);
pt(B[x]);
pt(C[x]);
ptn(D[x]);
}
return 0;
}
C
结果和评价
我的想法与思路
- 直接去切60分,直接想到
tarjan
尴尬的是
tarjan
忘了怎么写了。
反思
- 算法模板要牢记
- 时间复杂度一定要估计准确。。。不要写完了发现时间超限。。
60分思路
-
tarjan
缩点并求桥。
- 缩点后得到了树,树上的每个点都是关建边。
- 于是我们只有求树上两点间的距离即可:
dep[x]+dep[y]−2∗dep[LCA(x,y)]
const int M=30005,S=20;
int dfn[M],low[M],Dfn,fa[M][S],n,m,q,par[M],dep[M];
int T[M],num,stk[M],top,tree;
vector<int>G[M];
vector<int>g[M];
void tarjan(int x,int f=0){
dfn[x]=low[x]=++Dfn;
stk[++top]=x;
for(int i=0;i<G[x].size();i++){
int y=G[x][i];
if(y==f)continue;
if(dfn[y])Min(low[x],dfn[y]);
else{
tarjan(y,x);
Min(low[x],low[y]);
if(low[y]>dfn[x]){
++tree;
while(low[stk[top]]>dfn[x])T[stk[top--]]=tree;
g[T[f]].push_back(tree);
}
}
}
}
void dfs(int x,int f=0){
dep[x]=dep[f]+1;
fa[x][0]=f;
for(int i=0;i<g[x].size();i++){
int y=g[x][i];
if(y!=f)dfs(y,x);
}
}
int up(int a,int s){
for(int i=0;i<S;i++)
if(s&(1<<i))a=fa[a][i];
return a;
}
int LCA(int a,int b){
if(dep[a]>dep[b])swap(a,b);
b=up(b,dep[b]-dep[a]);
if(a!=b){
for(int i=S-1;i>=0;i--)
if(fa[a][i]!=fa[b][i])
a=fa[a][i],b=fa[b][i];
a=fa[a][0];
}return a;
}
int main(){
rd(n);rd(m);rd(q);
for(int i=1,x,y;i<=m;i++){
rd(x);rd(y);
G[y].push_back(x);
G[x].push_back(y);
}
tarjan(1);
tree++;
while(top)T[stk[top--]]=tree;
dfs(T[1]);
for(int i=1;i<S;i++)
for(int j=1;j<=n;j++)
fa[j][i]=fa[fa[j][i-1]][i-1];
while(q--){
int x,y;
rd(x);
rd(x);
rd(y);
x=T[x];
y=T[y];
ptn(dep[x]+dep[y]-2*dep[LCA(x,y)]);
}
return 0;
}
100分思路
const int M=3e5+5,S=19;
int fa[M][S],L[M],R[M],Dfn,dep[M],par[M],n,m,q,ans[M];
vector<int>G[M];
struct node{
int x,y,cmd;
}Q[M*2];
set<int>mark[M];
void dfs(int x,int f){
par[x]=x;
dep[x]=dep[f]+1,fa[x][0]=f;
L[x]=++Dfn;
for(int i=0;i<G[x].size();i++){
int y=G[x][i];
if(dep[y]||mark[x].find(y)!=mark[x].end())continue;
if(y!=f)dfs(y,x);
}
R[x]=Dfn;
}
int find(int x){
if(x==par[x])return x;
return par[x]=find(par[x]);
}
struct Bit{
int m[M];
void add(int x,int d){
for(int i=x;i<M;i+=i&-i)m[i]+=d;
}
int query(int x){
int res=0;
for(int i=x;i;i-=i&-i)res+=m[i];
return res;
}
}sum;
void up(int &x,int s){
for(int i=0;i<S;i++)
if(s&(1<<i))x=fa[x][i];
}
int LCA(int x,int y){
if(dep[x]<dep[y])swap(x,y);
up(x,dep[x]-dep[y]);
if(x==y)return x;
for(int i=S-1;i>=0;i--)
if(fa[x][i]!=fa[y][i])
x=fa[x][i],y=fa[y][i];
return fa[x][0];
}
void Add(int x,int y){
int anc=LCA(x,y);
while(dep[x=find(x)]>dep[anc]){
sum.add(L[x],1);
sum.add(R[x]+1,-1);
par[x]=fa[x][0];
}
x=y;
while(dep[x=find(x)]>dep[anc]){
sum.add(L[x],1);
sum.add(R[x]+1,-1);
par[x]=fa[x][0];
}
}
int calc(int x,int y){
int lca=LCA(x,y);
return dep[x]-sum.query(L[x])+dep[y]-sum.query(L[y])-2*(dep[lca]-sum.query(L[lca]));
}
int main(){
rd(n);rd(m);rd(q);
for(int i=1,y,x;i<=m;i++){
rd(x);rd(y);
G[x].push_back(y);
G[y].push_back(x);
}
for(int i=1,cmd,x,y;i<=q;i++){
rd(Q[i].cmd);rd(Q[i].x);rd(Q[i].y);
if(!Q[i].cmd)mark[Q[i].x].insert(Q[i].y),mark[Q[i].y].insert(Q[i].x);
}
dfs(1,0);
for(int i=1;i<S;i++)
for(int j=1;j<=n;j++)
fa[j][i]=fa[fa[j][i-1]][i-1];
for(int x=1;x<=n;x++){
for(int i=0;i<G[x].size();i++){
int y=G[x][i];
if(x<y&&fa[x][0]!=y&&fa[y][0]!=x&&mark[x].find(y)==mark[x].end())Add(x,y);
}
}
for(int i=q;i>=1;i--){
if(Q[i].cmd)ans[i]=calc(Q[i].x,Q[i].y);
else Add(Q[i].x,Q[i].y);
}
for(int i=1;i<=q;i++)
if(Q[i].cmd)printf("%d\n",ans[i]);
return 0;
}