小明被劫持到X赌城,被迫与其他3人玩牌。
一副扑克牌(去掉大小王牌,共52张),均匀发给4个人,每个人13张。
这时,小明脑子里突然冒出一个问题:
如果不考虑花色,只考虑点数,也不考虑自己得到的牌的先后顺序,自己手里能拿到的初始牌型组合一共有多少种呢?
请填写该整数,不要填写任何多余的内容或说明文字。
思路:
一开始的想法是直接用数学中的排列组合,然后。。。发现自己数学并不是很好。。
再想了想,用深搜,一共13种牌,每种牌各有4张。那么每次搜索每种牌有多少张,判定最后是否达到13张牌即可。于是就用了个大小为13的数组,每个数组的值为4,每次就一种牌减少一张,循环中的判断就是这种牌是否没有了。然而思路很美好,运行很残酷,为什么没有输出啊啊啊啊啊~
于是在网上查了一下,发现也是用深搜。只不过人家每次循环加上的是每种牌的张数,不用数组,循环中不用判定。哎,就是比我聪明~~
(思路2)代码:
(删了。。。懒得写了,就那个意思吧。。)
(思路3)代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
int sum = 0;
int ans = 0;
void dfs(int cnt)
{
if(sum > 13 || cnt > 13) //这个判断不能删掉,否则。。。至于是为什么,因为下面是两个条件都等于的时候才return,有些时候一直加一直加也没有return,所以要加上这个。
return ;
if(sum == 13 && cnt == 13)
{
ans++;
return;
}
for(int i=0; i<5; i++)
{
sum += i;
dfs(cnt+1);
sum -= i;
}
}
int main()
{
dfs(0);
cout << ans << endl;
return 0;
}