Pytorch入坑指南

本文是PyTorch初学者的实用指南,涵盖了使用tensorboard进行可视化,NMS操作,模长计算,GPU并行计算,Tensor扩展,不同尺度相乘,按索引操作,数据增广,List内Tensor合并,Tensor重排序,按坐标赋值,设备间转移,非0索引提取,最大值索引获取等关键知识点,同时提醒了在PyTorch中常见的避坑经验,如防止inplace操作导致的异常。
摘要由CSDN通过智能技术生成

pytorch使用tensorboard

writer.close() # 一定要加

注意:
(1)Python代码及启动命令要明确指定路径,tensorboard将显示该文件夹下的所有内容。
(2) 若网页无法打开,可能是该端口占用。使用ps -a查看,并使用kill -9 端口号即可。

参考
PyTorch 自带 TensorBoard 使用教程
PyTorch 1.1 or 1.2 使用Tensorboard

Pytorch NMS

torchvision.ops.nms(boxes, scores, iou_threshold)

boxes (Tensor[N, 4])) – bounding boxes坐标. 格式:(x1, y1, x2, y2)
scores (Tensor[N]) – bounding boxes得分
iou_threshold (float) – IoU过滤阈值
注意:boxes 、scores 必须是同一格式(Float32/64)

由(x,y,w,h)转化为(x1, y1, x2, y2)的方法如下

def transform(boxes):
    '''
    将(x,y,w,h)转化为(x1, y1, x2, y2)
    中心点坐标,宽高 -> 左上角坐标,右下角坐标
    :param boxes: [N,4]
    '''
    newBoxes=torch.zeros(size=boxes.shape).float()
    newBoxes[:,0]=boxes[:,0]-boxes[:,2]/2
    newBoxes[:,1]=boxes[:,1]-boxes[:,3]/2
    newBoxes[:,2]=boxes[:,0]+boxes[:,2]/2
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值