Opencv——银行卡识别系统

目录

前言

一、环境配置与预处理

二、模板处理方法

1.将图片传进来,以copy形式,进行二值化,便于后序识别。

2.二值化:

3.检测外轮廓,找出外接矩形,只要轮廓。

4.为现有的模板进行一个排序

三、输入数据处理方法

1.形态学处理:

2.过滤:

3.识别完成图

总结


前言

银行卡识别,是一个可以识别银行卡号的系统。主题是通过算法选出合适的区域,并将区域内的内容与已有模板进行匹配,成功后输出数值。


提示:以下是本篇文章正文内容,下面案例可供参考

一、环境配置与预处理

环境:任何一款带有debug的idle,这里以pycharm为示例

预处理:所需要重要的2各参数,匹配模板以及银行卡图片,需要参数设置:

                --image images/credit_card_01.png

                --template ocr_a_reference.png​​​​​​

ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required=True,
	help="path to input image")
ap.add_argument("-t", "--template", required=True,
	help="path to template OCR-A image")
args = vars(ap.parse_args())

   


二、模板处理方法

1.将图片传进来,以copy形式,进行二值化,便于后序识别。

原图\灰度图

2.二值化:

代码如下(示例):

# 绘图展示
def cv_show(name,img):
	cv2.imshow(name, img)
	cv2.waitKey(0)
	cv2.destroyAllWindows()
# 读取一个模板图像
img = cv2.imread(args["template"])
cv_show('img',img)
# 灰度图
ref = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
cv_show('ref',ref)
# 二值图像
ref = cv2.threshold(ref, 10, 255, cv2.THRESH_BINARY_INV)[1]
cv_show('ref',ref)

3.检测外轮廓,找出外接矩形,只要轮廓。

代码如下(示例):

refCnts, hierarchy = cv2.findContours(ref.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)

4.为现有的模板进行一个排序

我们需要将1.2.3的图片与数值进行匹配,这样在后续识别才能输出数值。顺带调试一下,发现确实画出了10个轮廓:调试器(内部版本号 211.7142.13)(10,)

那么该如何进行匹配呢,上面已经画出了每个数字的轮廓,接下来需要对每个轮廓进行长宽高的一个计算,通过长或者宽来进行排序。我们需要遍历所有轮廓,运用字典来将数值和轮廓的长宽等信息匹配。

代码如下(示例):

refCnts, hierarchy = cv2.findContours(ref.copy(),  #以copy的形式传入  
 cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)

cv2.drawContours(img,refCnts,-1,(0,0,255),3)     -1表示画出所有轮廓
cv_show('img',img)
print (np.array(refCnts,dtype=object).shape)
refCnts = myutils.sort_contours(refCnts, method="left-to-right")[0] #排序,从左到右,从上到下
digits = {}

# 遍历每一个轮廓
for (i, c) in enumerate(refCnts):         #i是数值,c是轮廓的信息
	# 计算外接矩形并且resize成合适大小,由于我们画出的轮廓实在有点小,我们需要resize,记住这个参数
	(x, y, w, h) = cv2.boundingRect(c)
	roi = ref[y:y + h, x:x + w]
	roi = cv2.resize(roi, (57, 88))

	# 每一个数字对应每一个模板
	digits[i] = roi

这样,我们就拥有了对应数值的模板


三、输入数据处理方法

1.形态学处理:

由于传进来的图片上面存在纹理,我们需要突出字体区域,因此不需要的东西要过滤掉,运用礼帽操作,过滤干扰项

2.过滤:

尽管已经经过不少处理,但是仍有干扰项,有些不是我们所需要的,这时候需要过滤。

 如何过滤?

我们可以看出,将所有的轮廓做一个外接矩形,每种轮廓的矩形长宽比是不同的,我们可以通过比例的筛选来确定所要保留的轮廓(比例可以自己测试得出),其他区域同理匹配:

3.识别完成图

 

 

 代码如下(示例):

# 初始化卷积核
rectKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (9, 3))
sqKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))

#读取输入图像,预处理
image = cv2.imread(args["image"])
cv_show('image',image)
image = myutils.resize(image, width=300)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
cv_show('gray',gray)

#礼帽操作,突出更明亮的区域
tophat = cv2.morphologyEx(gray, cv2.MORPH_TOPHAT, rectKernel) 
cv_show('tophat',tophat) 
# 
gradX = cv2.Sobel(tophat, ddepth=cv2.CV_32F, dx=1, dy=0, #ksize=-1相当于用3*3的
	ksize=-1)


gradX = np.absolute(gradX)
(minVal, maxVal) = (np.min(gradX), np.max(gradX))
gradX = (255 * ((gradX - minVal) / (maxVal - minVal)))
gradX = gradX.astype("uint8")

print (np.array(gradX).shape)
cv_show('gradX',gradX)

#通过闭操作(先膨胀,再腐蚀)将数字连在一起
gradX = cv2.morphologyEx(gradX, cv2.MORPH_CLOSE, rectKernel) 
cv_show('gradX',gradX)
#THRESH_OTSU会自动寻找合适的阈值,适合双峰,需把阈值参数设置为0
thresh = cv2.threshold(gradX, 0, 255,
	cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1] 
cv_show('thresh',thresh)

#再来一个闭操作

thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, sqKernel) #再来一个闭操作
cv_show('thresh',thresh)

# 计算轮廓

threshCnts, hierarchy = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
	cv2.CHAIN_APPROX_SIMPLE)

cnts = threshCnts
cur_img = image.copy()
cv2.drawContours(cur_img,cnts,-1,(0,0,255),3) 
cv_show('img',cur_img)
locs = []

# 遍历轮廓
for (i, c) in enumerate(cnts):
	# 计算矩形
	(x, y, w, h) = cv2.boundingRect(c)
	ar = w / float(h)

	# 选择合适的区域,根据实际任务来,这里的基本都是四个数字一组
	if ar > 2.5 and ar < 4.0:

		if (w > 40 and w < 55) and (h > 10 and h < 20):
			#符合的留下来
			locs.append((x, y, w, h))

# 将符合的轮廓从左到右排序
locs = sorted(locs, key=lambda x:x[0])
output = []

# 遍历每一个轮廓中的数字
for (i, (gX, gY, gW, gH)) in enumerate(locs):
	# initialize the list of group digits
	groupOutput = []

	# 根据坐标提取每一个组
	group = gray[gY - 5:gY + gH + 5, gX - 5:gX + gW + 5]
	cv_show('group',group)
	# 预处理
	group = cv2.threshold(group, 0, 255,
		cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
	cv_show('group',group)
	# 计算每一组的轮廓
	digitCnts,hierarchy = cv2.findContours(group.copy(), cv2.RETR_EXTERNAL,
		cv2.CHAIN_APPROX_SIMPLE)
	digitCnts = contours.sort_contours(digitCnts,
		method="left-to-right")[0]

	# 计算每一组中的每一个数值
	for c in digitCnts:
		# 找到当前数值的轮廓,resize成合适的的大小
		(x, y, w, h) = cv2.boundingRect(c)
		roi = group[y:y + h, x:x + w]
		roi = cv2.resize(roi, (57, 88))
		cv_show('roi',roi)

		# 计算匹配得分
		scores = []

		# 在模板中计算每一个得分
		for (digit, digitROI) in digits.items():
			# 模板匹配
			result = cv2.matchTemplate(roi, digitROI,
				cv2.TM_CCOEFF)
			(_, score, _, _) = cv2.minMaxLoc(result)
			scores.append(score)

		# 得到最合适的数字
		groupOutput.append(str(np.argmax(scores)))

	# 画出来
	cv2.rectangle(image, (gX - 5, gY - 5),
		(gX + gW + 5, gY + gH + 5), (0, 0, 255), 1)
	cv2.putText(image, "".join(groupOutput), (gX, gY - 15),
		cv2.FONT_HERSHEY_SIMPLEX, 0.65, (0, 0, 255), 2)

	# 得到结果
	output.extend(groupOutput)

# 打印结果
print("Credit Card Type: {}".format(FIRST_NUMBER[output[0]]))
print("Credit Card #: {}".format("".join(output)))
cv2.imshow("Image", image)
cv2.waitKey(0)


总结

提示:这里对文章进行总结:
以上就是今天要讲的内容,本文仅仅简单介绍了银行卡识别,其中的一些函数用法,详解将会在后续补充。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值