【数据分析学习笔记day24】Bokeh绘图+Bokeh+Bokeh接口+包引用+bokeh.charts+bokeh.plotting+散点图 Scatter+柱状图 Bar+盒子图 BoxPlot

本文是关于Bokeh Python库的学习笔记,详细介绍了如何使用Bokeh进行交互式数据可视化,包括散点图、柱状图、盒子图和弦图的绘制。Bokeh是一个针对Web浏览器的可视化库,提供高层接口Charts、中层接口Plotting和底层接口Models,支持创建复杂且交互性强的图表。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Bokeh绘图

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-DKIDQp8s-1579959024520)(../images/bokeh_logo.png)] [http://bokeh.pydata.org/en/latest
http://bokeh.pydata.org/en/latest

Bokeh

是一个专门针对Web浏览器的呈现功能的交互式可视化Python库。这是Bokeh与其它可视化库最核心的区别。

  • 专门针对Web浏览器的交互式、可视化Python绘图库
  • 可以做出像D3.js简洁漂亮的交互可视化效果,但是使用难度低于D3.js。
  • 独立的HTML文档或服务端程序
  • 可以处理大量、动态或数据流
  • 支持Python (或Scala, R, Julia…)
  • 不需要使用Javascript

Bokeh接口

  • Charts: 高层接口,以简单的方式绘制复杂的统计图
  • Plotting: 中层接口,用于组装图形元素
  • Models: 底层接口,为开发者提供了最大的灵活性

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-BrojuGJf-1579959024521)(../images/bokeh.png)]

包引用

from bokeh.io import output_notebook, output_file, show
from bokeh.charts import Scatter, Bar, BoxPlot, Chord
from bokeh.layouts import row
import seaborn as sns

# 导入数据
exercise = sns.load_dataset('exercise')

output_notebook()
#output_file('test.html')
  • from bokeh.io import output_file 生成.html文档
  • from boken.io import output_notebook 在jupyter中使用

bokeh.charts

http://bokeh.pydata.org/en/latest/docs/reference/charts.html

散点图 Scatter

示例代码:

# 散点图</
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值