模型评估
学习目标
- 目标
- 了解机器学习中模型评估的方法
- 知道过拟合、欠拟合发生情况
- 应用
模型评估是模型开发过程不可或缺的一部分。它有助于发现表达数据的最佳模型和所选模型将来工作的性能如何。按照数据集的目标值不同,可以把模型评估分为分类模型评估和回归模型评估。
1 分类模型评估
- 准确率
- 精确率
- 召回率
- F1-score
- AUC指标
2 回归模型评估

-
均方根误差(Root Mean Squared Error,RMSE)
- RMSE是一个衡量回归模型误差率的常用公式。 然而,它仅能比较误差是相同单位的模型。