机器学习——模型的评估方法速查手册(RMSE+RSE+MAE+RAE+R^2)

本文介绍了机器学习模型的评估方法,包括分类模型的准确率、精确率、召回率、F1-score和AUC指标,以及回归模型的RMSE、RSE、MAE、RAE和决定系数R^2。同时,阐述了过拟合和欠拟合的概念及其判断方式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

模型评估

学习目标

  • 目标
  • 了解机器学习中模型评估的方法
  • 知道过拟合、欠拟合发生情况
  • 应用

模型评估是模型开发过程不可或缺的一部分。它有助于发现表达数据的最佳模型和所选模型将来工作的性能如何。按照数据集的目标值不同,可以把模型评估分为分类模型评估和回归模型评估。

1 分类模型评估

  • 准确率
    • 预测正确的数占样本总数的比例。
  • 精确率
    • 正确预测为正占全部预测为正的比例
  • 召回率
    • 正确预测为正占全部正样本的比例
  • F1-score
    • 主要用于评估模型的稳健性
  • AUC指标
    • 主要用于评估样本不均衡的情况

2 回归模型评估

在这里插入图片描述

  • 均方根误差(Root Mean Squared Error,RMSE)
    • RMSE是一个衡量回归模型误差率的常用公式。 然而,它仅能比较误差是相同单位的模型。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值