数据分析模型及商业决策(一):带你一文掌握统计学基础

本文介绍了统计学的基础知识,包括描述性统计和推断性统计,通过销售数据案例展示了集中度、离散度和相关性的分析方法。此外,探讨了概率和概率分布,以及如何在数据分析中应用概率。最后,讲解了样本估计和假设检验,强调其在验证数据和商业决策中的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【描述数据的统计学工具】

一、统计分为两大类

  • 一个是分析数据集中度和分散度的描述性统计
  • 一个是通过样本对总体情况作出推断的推断性统计

只有掌握了统计学基础,我们才能在统计学的基础上进行聚类、回归、分类、组间差异这四个常见的数据分析方法

二、数据案例引入

2.1销售数据

原始数据中上万条的记录都被保存着,一眼看上去是杂乱无章的数据

2.2销售额表现怎么样?

阐述解释数据的状况,这就是描述统计

2.3可视化

描述数据有两个关键的问题(描述性统计分析)

  • 中心度:销售额集中在哪个区
    在这里插入图片描述
  • 分散度:最小值和最大值之间的区间(左侧箭头)
    在这里插入图片描述

三、数据的集中度

包括以下三点:

  • 均值,平均数,均件,最常用的衡量集中度的指标(误区:有非常大的或者非常小的销售额会拉高整体均值,因此需要同时提供中位数和众数)
  • 中位数,将数据从小到大排列之后,处于最中间位置的那个数字
  • 众数,数据中出现最频繁的那个数字,可能有很多众数,或者找不到众数

四、数据的离散度

包括以下四点:

  • 全距,数据中最大值和最小值的差,是简单实用的指标
  • 四分位数,对全距的改进,从小到大排序,均分为四等分,四分位数有三个,处在25%位置上的数值(Q1),处在50%位置上数值即中位数(Q2),和处在75%6位置上的数值(Q3),确定四分位数的位置公式
    Q1的位置=(n+1) x 0.25
    Q2的位置=(n+1) x 0.5
    Q3的位置=(n+1) x 0.75
  • 方差,更全面的反映离散度,偏离
    在这里插入图片描述
  • 标准差,方差的开方结果,越大,表示偏离越远

五、数据的相关性

5.1案例

数据有很多种类---------------->研究不同数据之间的关系

  • 用户在app上的使用时间和他们购买产品金额大小之间的关系
  • 用户个人资产大小以及他们申请贷款的金额等等

5.2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值