数据结构实现 4.1:集合_基于二分搜索树实现(C++版)
1. 概念及基本框架
集合 是一种高级数据结构,其实现方法也不唯一,但存储上使用 链式存储(即内存的物理空间是不连续的)。这一节我们通过 二分搜索树 来实现集合这种数据结构。
集合 的基本特性:集合内的元素 不能重复 。
注:有些集合(多重集合)中元素也可以重复。
显然,二分搜索树满足集合的特性,所以我们尝试利用二分搜索树来实现集合。
我们先利用一个由 纯虚函数 构成的 抽象类 作为一个接口来定义这些操作。具体代码如下:
template <class T>
class Set{
public:
virtual int size() = 0;
virtual bool isEmpty() = 0;
//增加操作
virtual void add(T num) = 0;
//删除操作
virtual void remove(T num) = 0;
//查找操作
virtual bool contains(T num) = 0;
};
下面只需要通过继承 抽象类,并且重写 纯虚函数 ,就可以完成 集合 的实现。集合类的框架如下:
template <class T>
class BSTSet : public Set<T>{
...
private:
BST<T> bst;
};
这里为了避免重复设计就可以兼容更多数据类型,引入了 泛型 ,即 模板 的概念。(模板的关键字是 class 或 typename)
这里的 bst 表示一棵 二分搜索树 ,同样,为了保护数据,变量设置为 private 。
注:这里没有显式的给出构造函数,因为子类中除了二分搜索树对象之外没有特别需要初始化的东西。编译器会默认先调用 二分搜索树 类(即父类)的构造函数,再去调用 集合 类(即子类)的构造函数。
实现了前面的程序之后,接下来就是一个集合的增、删、查以及一些其他基本操作,接下来利用代码去实现。
2. 基本操作程序实现
2.1 增加操作
template <class T>
class BSTSet : public Set<T>{
public:
...
//增加操作
void add(T num){
bst.add(num);
}
...
};
直接调用二分搜索树的增加操作。(因为二分搜索树中的元素本来就不重复)
2.2 删除操作
template <class T>
class BSTSet : public Set<T>{
public:
...
//删除操作
void remove(T num){
bst.remove(num);
}
...
};
直接调用二分搜索树的删除操作。
2.3 查找操作
template <class T>
class BSTSet : public Set<T>{
public:
...
//查找操作
bool contains(T num){
return bst.contains(num);
}
...
};
2.4 其他操作
集合还有一些其他的操作,包括 集合大小 的查询等操作。
template <class T>
class BSTSet : public Set<T>{
public:
int size(){
return bst.size();
}
bool isEmpty(){
return bst.isEmpty();
}
...
};
3. 算法复杂度分析
因为集合操作直接调用了二分搜索树的操作,所以其操作的时间复杂度和二分搜索树相同。
3.1 增加操作
函数 | 最坏复杂度 | 平均复杂度 |
---|---|---|
add | O(n) | O(logn) |
3.2 删除操作
函数 | 最坏复杂度 | 平均复杂度 |
---|---|---|
remove | O(n) | O(logn) |
3.3 查找操作
函数 | 最坏复杂度 | 平均复杂度 |
---|---|---|
contains | O(n) | O(logn) |
总体情况:
操作 | 时间复杂度 |
---|---|
增 | O(logn) |
删 | O(logn) |
查 | O(logn) |
很显然,利用二分搜索树很容易实现集合这一高级数据结构。
4. 完整代码
程序完整代码(这里使用了头文件的形式来实现类)如下,本节不再提供 二分搜索树 类的实现代码,如有需要,可参看 3.1 。
抽象类 接口代码:
#ifndef __SET_H__
#define __SET_H__
template <class T>
class Set{
public:
virtual int size() = 0;
virtual bool isEmpty() = 0;
//增加操作
virtual void add(T num) = 0;
//删除操作
virtual void remove(T num) = 0;
//查找操作
virtual bool contains(T num) = 0;
};
#endif
集合类 代码:
#ifndef __BSTSET_H__
#define __BSTSET_H__
#include "BST.h"
#include "Set.h"
template <class T>
class BSTSet : public Set<T>{
public:
int size(){
return bst.size();
}
bool isEmpty(){
return bst.isEmpty();
}
//增加操作
void add(T num){
bst.add(num);
}
//删除操作
void remove(T num){
bst.remove(num);
}
//查找操作
bool contains(T num){
return bst.contains(num);
}
private:
BST<T> bst;
};
#endif