曲线与曲面积分

曲线积分

第一型曲线积分

第一型曲线积分的定义

假设 f : U → R f:U\rightarrow\R f:UR,其中 U ∈ R 3 U\in\R^3 UR3,以及 U U U中的一条曲线 Γ \Gamma Γ以及其关于弧长的参数化 r ^ : s ↦ r ^ ( s ) \mathbf{\hat{r}}:s\mapsto\mathbf{\hat{r}}(s) r^:sr^(s),即一个特殊的参数化:当 s s s取从曲线起点开始的弧长时, r ^ ( s ) \mathbf{\hat{r}}(s) r^(s)刚好为曲线上与起点之间弧长为 s s s的点坐标,其中 s ∈ [ 0 , l ] s\in[0,l] s[0,l] l l l是曲线的弧长。那么定义第一型曲面积分为:
∫ Γ f d s : = ∫ 0 l f ( r ^ ( s ) ) d s \int_\Gamma{fds}:=\int_0^l{f(\mathbf{\hat{r}}(s))ds} Γfds:=0lf(r^(s))ds

第一型曲线积分的计算

给定 Γ \Gamma Γ的任意一个光滑参数化 r : [ a , b ] → Γ , t ↦ r ( t ) \mathbf{r}:[a,b]\rightarrow\Gamma,t\mapsto\mathbf{r}(t) r:[a,b]Γ,tr(t),设
S ( t ) = ∫ a t ∣ ∣ r ′ ( t ) ∣ ∣ d t S(t)=\int_a^t||\mathbf{r}'(t)||dt S(t)=at∣∣r(t)∣∣dt
由弧微分知识可知这代表 Γ \Gamma Γ上点 r ( a ) , r ( t ) \mathbf{r}(a),\mathbf{r}(t) r(a),r(t)之间的弧长,由变上限积分的求导法则可知 S ′ ( t ) = ∣ ∣ r ′ ( t ) ∣ ∣ S'(t)=||\mathbf{r}'(t)|| S(t)=∣∣r(t)∣∣。由换元积分法可知
∫ Γ f d s = ∫ 0 l f ( r ^ ( s ) ) d s = ∫ a b f ( r ( t ) ) d S ( t ) = ∫ a b f ( r ( t ) ) S ′ ( t ) d t = ∫ a b f ( r ( t ) ) ∣ ∣ r ′ ( t ) ∣ ∣ d t \int_\Gamma{fds}=\int_0^l{f(\mathbf{\hat{r}}(s))ds}=\int_a^b{f(\mathbf{r}(t))}dS(t)=\int_a^b{f(\mathbf{r}(t))}S'(t)dt=\int_a^b{f(\mathbf{r}(t))}||\mathbf{r}'(t)||dt Γfds=0lf(r^(s))ds=abf(r(t))dS(t)=abf(r(t))S(t)dt=abf(r(t))∣∣r(t)∣∣dt
从而将第一型曲线积分化成了定积分。

第二型曲线积分

第二型曲线积分的定义

假设 F : U → R 3 \mathbf{F}:U\rightarrow\R^3 F:UR3,其中 U ∈ R 3 U\in\R^3 UR3,以及 U U U中的一条可定向曲线 Γ \Gamma Γ。给定 Γ \Gamma Γ的一个定向,根据这个方向定义一个 Γ \Gamma Γ上的单位切向量场 T : Γ → R 3 \mathbf{T}:\Gamma\rightarrow\R^3 T:ΓR3,从而定义第二型曲线积分
∫ Γ F ⋅ d s : = ∫ Γ F ⋅ T d s \int_\Gamma\mathbf{F}\cdot d\mathbf{s}:=\int_\Gamma \mathbf{F}\cdot\mathbf{T}ds ΓFds:=ΓFTds
F = ( F x , F y , F z ) , T = ( T x , T y , T z ) \mathbf{F}=(F_x,F_y,F_z),\mathbf{T}=(T_x,T_y,T_z) F=(Fx,Fy,Fz),T=(Tx,Ty,Tz),有
∫ Γ F ⋅ T d s = ∫ Γ ( F x T x + F y T y + F z T z ) d s = ∫ Γ F x ( T x d s ) + F y ( T y d s ) + F z ( T z d s ) = ∫ Γ F x d x + F y d y + F z d z \int_\Gamma \mathbf{F}\cdot\mathbf{T}ds=\int_\Gamma (F_xT_x+F_yT_y+F_zT_z)ds=\int_\Gamma F_x(T_xds)+F_y(T_yds)+F_z(T_zds)=\int_\Gamma F_xdx+F_ydy+F_zdz ΓFTds=Γ(FxTx+FyTy+FzTz)ds=ΓFx(Txds)+Fy(Tyds)+Fz(Tzds)=ΓFxdx+Fydy+Fzdz
其中 d s = ( d x , d y , d z ) d\mathbf{s}=(dx,dy,dz) ds=(dx,dy,dz),从而得到第二型曲线积分分量形式。

第二型曲线积分的计算

给定 Γ \Gamma Γ的任意一个光滑参数化 r : [ a , b ] → Γ , t ↦ r ( t ) \mathbf{r}:[a,b]\rightarrow\Gamma,t\mapsto\mathbf{r}(t) r:[a,b]Γ,tr(t),注意到 r ′ \mathbf{r}' r也指定了曲线的一个定向,不妨假设 T \mathbf{T} T r ′ \mathbf{r}' r指定相同的定向(否则只需加一个负号),从而有
T ( r ( t ) ) = r ′ ( t ) ∣ ∣ r ′ ( t ) ∣ ∣ \mathbf{T}(\mathbf{r}(t))=\frac{\mathbf{r}'(t)}{||\mathbf{r}'(t)||} T(r(t))=∣∣r(t)∣∣r(t)
从而
∫ Γ F ⋅ d s : = ∫ Γ F ⋅ T d s = ∫ a b ( F ⋅ T ) ( r ( t ) ) ∣ ∣ r ′ ( t ) ∣ ∣ d t = ∫ a b F ( r ( t ) ) ⋅ r ′ ( t ) d t \int_\Gamma\mathbf{F}\cdot d\mathbf{s}:=\int_\Gamma \mathbf{F}\cdot\mathbf{T}ds=\int_a^b(\mathbf{F}\cdot\mathbf{T})(\mathbf{r}(t))||\mathbf{r}'(t)||dt=\int_a^b\mathbf{F}(\mathbf{r}(t))\cdot\mathbf{r}'(t)dt ΓFds:=ΓFTds=ab(FT)(r(t))∣∣r(t)∣∣dt=abF(r(t))r(t)dt
因此把第二型曲线积分转化为定积分。

进一步,对于第二型曲线积分的分量形式,可以视为曲线在三个坐标轴上投影曲线的三个第二型曲线积分的和,此时原曲线的定向也给定了一个投影曲线的定向。例如(假设曲线的定向与 ( x ′ , y ′ , z ′ ) (x',y',z') (x,y,z)相同)
∫ Γ F x d x = ∫ a b F x ( r ( t ) ) d x ( t ) \int_\Gamma F_xdx=\int_a^b F_x(\mathbf{r}(t))dx(t) ΓFxdx=abFx(r(t))dx(t)
根据换元积分公式,假定 x ′ ≠ 0 x'\neq0 x=0,根据隐函数存在定理可以利用 x x x进行参数化,那么有
∫ a b F x ( r ( t ) ) d x ( t ) = ∫ x ( a ) x ( b ) F x ( x , y ( x ) , z ( x ) ) d x \int_a^b F_x(\mathbf{r}(t))dx(t)=\int_{x(a)}^{x(b)} F_x(x,y(x),z(x))dx abFx(r(t))dx(t)=x(a)x(b)Fx(x,y(x),z(x))dx
注意到 x x x不一定可以参数化整条曲线,但是可以通过将曲线分成若干段,在每一段中利用 x x x进行参数化,从而转化为关于变量 x x x的定积分。对 y , z y,z y,z有类似的讨论。

例如,对图中定向曲线进行第二型曲线积分,其在 x x x轴投影部分的积分计算时可以分为两段(红蓝两段),红段积分下限小于上限,蓝段积分上限小于下限,这里就体现出第二型曲线积分的方向性。假设 F x F_x Fx在红蓝两端上对应点取值相同,那么积分值将为0。
在这里插入图片描述

曲面积分

第一型曲面积分

第一型曲面积分的定义

假设 f : U → R f:U\rightarrow\R f:UR,其中 U ∈ R 3 U\in\R^3 UR3,以及 U U U中的一张曲面 Σ \Sigma Σ以及其正则参数化 r : D → Σ , ( u , v ) ↦ r ( u , v ) , D ∈ R 2 \mathbf{r}:D\rightarrow\Sigma,(u,v)\mapsto\mathbf{r}(u,v),D\in\R^2 r:DΣ,(u,v)r(u,v),DR2。考虑 D D D中一条光滑曲线 ( u ( t ) , v ( t ) ) (u(t),v(t)) (u(t),v(t)),对应于 Σ \Sigma Σ上的曲线 r ( u ( t ) , v ( t ) ) \mathbf{r}(u(t),v(t)) r(u(t),v(t)),设 u ( t 0 ) = u 0 , v ( t 0 ) = v 0 u(t_0)=u_0,v(t_0)=v_0 u(t0)=u0,v(t0)=v0,求 Σ \Sigma Σ上这条曲线在 r ( u 0 , v 0 ) \mathbf{r}(u_0,v_0) r(u0,v0)的切向量 T \mathbf{T} T,显然
T = ∂ ∂ u r ( u 0 , v 0 ) ⋅ u ′ ( t 0 ) + ∂ ∂ v r ( u 0 , v 0 ) ⋅ v ′ ( t 0 ) ∈ s p a n ( ∂ ∂ u r ( u 0 , v 0 ) , ∂ ∂ v r ( u 0 , v 0 ) ) \mathbf{T}=\frac{\partial}{\partial u}\mathbf{r}(u_0,v_0)\cdot u'(t_0)+\frac{\partial}{\partial v}\mathbf{r}(u_0,v_0)\cdot v'(t_0)\in span(\frac{\partial}{\partial u}\mathbf{r}(u_0,v_0),\frac{\partial}{\partial v}\mathbf{r}(u_0,v_0)) T=ur(u0,v0)u(t0)+vr(u0,v0)v(t0)span(ur(u0,v0),vr(u0,v0))
其中 ∂ ∂ u r = ( ∂ ∂ u r x , ∂ ∂ u r y , ∂ ∂ u r z ) \frac{\partial}{\partial u}\mathbf{r}=(\frac{\partial}{\partial u}r_x,\frac{\partial}{\partial u}r_y,\frac{\partial}{\partial u}r_z) ur=(urx,ury,urz),对于 v v v是类似的。

注意到
s p a n ( ∂ ∂ u r ( u 0 , v 0 ) , ∂ ∂ v r ( u 0 , v 0 ) ) span(\frac{\partial}{\partial u}\mathbf{r}(u_0,v_0),\frac{\partial}{\partial v}\mathbf{r}(u_0,v_0)) span(ur(u0,v0),vr(u0,v0))
与所选取的曲线无关,这恰好是所有经过该点的光滑曲线的切向量张成的空间。考虑 Σ \Sigma Σ在该点的面积元素 d A ( r ( u 0 , v 0 ) ) = ∣ ∣ ∂ ∂ u r ( u 0 , v 0 ) × ∂ ∂ v r ( u 0 , v 0 ) ∣ ∣ d u d v dA(\mathbf{r}(u_0,v_0))=||\frac{\partial}{\partial u}\mathbf{r}(u_0,v_0)\times\frac{\partial}{\partial v}\mathbf{r}(u_0,v_0)||dudv dA(r(u0,v0))=∣∣ur(u0,v0)×vr(u0,v0)∣∣dudv

则定义第一型曲面积分
∬ Σ f d σ : = ∬ D f ( r ( u , v ) ) ∣ ∣ ∂ ∂ u r × ∂ ∂ v r ∣ ∣ ( u , v ) d u d v \iint_\Sigma fd\sigma:=\iint_D f(\mathbf{r}(u,v))||\frac{\partial}{\partial u}\mathbf{r}\times\frac{\partial}{\partial v}\mathbf{r}||_{(u,v)}dudv Σfdσ:=Df(r(u,v))∣∣ur×vr(u,v)dudv

第一型曲面积分的计算

定义中给出了计算方式,即转化为二重积分计算。

第二型曲面积分

第二型曲面积分的定义

假设 F : U → R 3 \mathbf{F}:U\rightarrow\R^3 F:UR3,其中 U ∈ R 3 U\in\R^3 UR3,以及 U U U中的一条双侧曲面 Σ \Sigma Σ。给定 Σ \Sigma Σ的一个定侧,根据这个方向定义一个 Σ \Sigma Σ上的单位切向量场 N : Σ → R 3 \mathbf{N}:\Sigma\rightarrow\R^3 N:ΣR3,从而定义第二型曲面积分
∬ Σ F ⋅ d σ : = ∬ Σ F ⋅ N d σ \iint_{\Sigma}\mathbf{F}\cdot d\boldsymbol{\sigma}:=\iint_\Sigma\mathbf{F}\cdot\mathbf{N}d\sigma ΣFdσ:=ΣFNdσ
F = ( F x , F y , F z ) , N = ( N x , N y , N z ) \mathbf{F}=(F_x,F_y,F_z),\mathbf{N}=(N_x,N_y,N_z) F=(Fx,Fy,Fz),N=(Nx,Ny,Nz),有
∬ Σ F ⋅ N d σ = ∬ Σ ( F x N x + F y N y + F z N z ) d σ = ∬ Σ F x ( N x d σ ) + F y ( N y d σ ) + F z ( N z d σ ) = ∬ Σ F x d y d z + F y d z d x + F z d x d y \iint_\Sigma\mathbf{F}\cdot\mathbf{N}d\sigma=\iint_\Sigma(F_xN_x+F_yN_y+F_zN_z)d\sigma=\iint_\Sigma F_x(N_xd\sigma)+F_y(N_yd\sigma)+F_z(N_zd\sigma)=\iint_\Sigma F_xdydz+F_ydzdx+F_zdxdy ΣFNdσ=Σ(FxNx+FyNy+FzNz)dσ=ΣFx(Nxdσ)+Fy(Nydσ)+Fz(Nzdσ)=ΣFxdydz+Fydzdx+Fzdxdy
其中 d σ = ( d y d z , d z d x , d x d y ) d\boldsymbol{\sigma}=(dydz,dzdx,dxdy) dσ=(dydz,dzdx,dxdy),从而得到第二型曲面积分分量形式。

第二型曲面积分的计算

给定 Σ \Sigma Σ的任意一个光滑参数化 r : D → Σ , ( u , v ) ↦ r ( u , v ) , D ∈ R 2 \mathbf{r}:D\rightarrow\Sigma,(u,v)\mapsto\mathbf{r}(u,v),D\in\R^2 r:DΣ,(u,v)r(u,v),DR2,注意到 ∂ ∂ u r × ∂ ∂ v r \frac{\partial}{\partial u}\mathbf{r}\times\frac{\partial}{\partial v}\mathbf{r} ur×vr也指定了曲线的一个定向,不妨假设 N \mathbf{N} N ∂ ∂ u r × ∂ ∂ v r \frac{\partial}{\partial u}\mathbf{r}\times\frac{\partial}{\partial v}\mathbf{r} ur×vr指定相同的定向(否则只需加一个负号),从而有
N ( r ( u , v ) ) = ∂ ∂ u r ( u , v ) × ∂ ∂ v r ( u , v ) ∣ ∣ ∂ ∂ u r ( u 0 , v 0 ) × ∂ ∂ v r ( u 0 , v 0 ) ∣ ∣ \mathbf{N}(\mathbf{r}(u,v))=\frac{\frac{\partial}{\partial u}\mathbf{r}(u,v)\times\frac{\partial}{\partial v}\mathbf{r}(u,v)}{||\frac{\partial}{\partial u}\mathbf{r}(u_0,v_0)\times\frac{\partial}{\partial v}\mathbf{r}(u_0,v_0)||} N(r(u,v))=∣∣ur(u0,v0)×vr(u0,v0)∣∣ur(u,v)×vr(u,v)
从而
∬ Σ F ⋅ d σ : = ∬ D ( F ⋅ N ) ( r ( u , v ) ) ∣ ∣ ∂ ∂ u r ( u , v ) × ∂ ∂ v r ( u , v ) ∣ ∣ d u d v = ∬ D F ( r ( u , v ) ) ( ∂ ∂ u r ( u , v ) × ∂ ∂ v r ( u , v ) ) d u d v \iint_{\Sigma}\mathbf{F}\cdot d\boldsymbol{\sigma}:=\iint_D (\mathbf{F\cdot N})(\mathbf{r}(u,v))||\frac{\partial}{\partial u}\mathbf{r}(u,v)\times\frac{\partial}{\partial v}\mathbf{r}(u,v)||dudv=\iint_D \mathbf{F}(\mathbf{r}(u,v))(\frac{\partial}{\partial u}\mathbf{r}(u,v)\times\frac{\partial}{\partial v}\mathbf{r}(u,v))dudv ΣFdσ:=D(FN)(r(u,v))∣∣ur(u,v)×vr(u,v)∣∣dudv=DF(r(u,v))(ur(u,v)×vr(u,v))dudv
因此把第二型曲面积分转化为二重积分。

进一步,对于第二型曲面积分的分量形式,可以视为曲面在三个坐标平面上投影曲线的三个第二型曲面积分的和,此时原曲面的定向也给定了一个投影曲面的定向。例如(假设曲面的定向与 ∂ ∂ u r ( u , v ) × ∂ ∂ v r ( u , v ) \frac{\partial}{\partial u}\mathbf{r}(u,v)\times\frac{\partial}{\partial v}\mathbf{r}(u,v) ur(u,v)×vr(u,v)相同)
∬ Σ F z d x d y = ∬ D F z ( r ( u , v ) ) d x ( u , v ) d y ( u , v ) \iint_\Sigma F_zdxdy=\iint_D F_z(\mathbf{r}(u,v))dx(u,v)dy(u,v) ΣFzdxdy=DFz(r(u,v))dx(u,v)dy(u,v)
根据换元积分公式,假定 ∇ x , ∇ y ≠ 0 \nabla x,\nabla y\neq0 x,y=0,根据隐函数存在定理可以利用 ( x , y ) (x,y) (x,y)进行参数化,那么有
∬ D F z ( r ( u , v ) ) d x ( u , v ) d y ( u , v ) = ∬ D x y F z ( x , y , z ( x , y ) ) d x d y \iint_D F_z(\mathbf{r}(u,v))dx(u,v)dy(u,v)=\iint_{D_{xy}}F_z(x,y,z(x,y))dxdy DFz(r(u,v))dx(u,v)dy(u,v)=DxyFz(x,y,z(x,y))dxdy
其中 D x y D_{xy} Dxy D D D x O y xOy xOy平面的有向投影(即如果曲面定侧的法向量与 d x × d y dx\times dy dx×dy z z z轴正向单位向量 k \mathbf{k} k夹锐角)。注意到 ( x , y ) (x,y) (x,y)不一定可以参数化整条曲面,但是可以通过将曲面分成若干片,在每一片中利用 ( x , y ) (x,y) (x,y)进行参数化,从而转化为关于变量 ( x , y ) (x,y) (x,y)的二重积分。对 ( y , z ) , ( z , x ) (y,z),(z,x) (y,z),(z,x)有类似的讨论。

例如,对图中红( x O y xOy xOy平面上方)蓝( x O y xOy xOy平面下方)曲面(取外侧)在 x O y xOy xOy平面上投影的第二型曲面积分,则将曲面分为红、蓝两片,再计算红色部分的积分时应取对应二重积分值的正值,计算蓝色部分时应取对应二重积分值的负值。假设 F x F_x Fx在红蓝两面上对应点取值相同,那么整体的积分值为0。
在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值