【高等数学】曲线积分和曲面积分2

本文详细探讨了曲面积分的概念,包括对面积的曲面积分和对坐标的曲面积分,并介绍了高斯公式、散度和旋度的定义及应用。通过实例解析了曲面积分的计算方法,帮助理解曲面质量和流量的计算。
摘要由CSDN通过智能技术生成

本文还有第一部分,包含对弧长的曲线积分、对坐标的曲线积分、格林公式及其应用

对面积的曲面积分

一、对面积的曲面积分的定义

设曲面 ∑ \sum 是光滑的,函数 f ( x , y , z ) f(x,y,z) f(x,y,z) ∑ \sum 上有界,把 ∑ \sum 任意分成n小块 Δ S i \Delta S_i ΔSi Δ S i \Delta S_i ΔSi同时代表第 i i i小块曲面的面积),设 ( ξ i , η i , ζ i ) (\xi_i,\eta_i,\zeta_i) (ξi,ηi,ζi) Δ S i \Delta S_i ΔSi上任意取定的一点,做乘积 f ( ξ i , η i , ζ i ) Δ S i ( i = 1 , 2 , 3 , ⋯   , n ) f(\xi_i,\eta_i,\zeta_i)\Delta S_i\quad(i=1,2,3,\cdots,n) f(ξi,ηi,ζi)ΔSi(i=1,2,3,,n),并作和 ∑ i = 1 n f ( ξ i , η i , ζ i ) Δ S i \sum^n_{i=1}f(\xi_i,\eta_i,\zeta_i)\Delta S_i i=1nf(ξi,ηi,ζi)ΔSi,如果当各小块曲面的直径的最大值 λ → 0 \lambda\to0 λ0时,这和的极限总存在,且与曲面 ∑ \sum 的分发及点 ( ξ i , η i , ζ i ) (\xi_i,\eta_i,\zeta_i) (ξi,ηi,ζi)的取法无关,那么称此极限为函数 f ( x , y , z ) f(x,y,z) f(x,y,z)在曲面 ∑ \sum 上对面积的曲面积分或第一类曲面积分,记作 ∬ ∑ f ( x , y , z ) d S \iint\limits_{\sum} f(x,y,z)dS f(x,y,z)dS,即 ∬ ∑ f ( x , y , z ) d S = lim ⁡ λ → 0 ∑ i = 1 n f ( ξ i , η i , ζ i ) Δ S i \iint\limits_{\sum} f(x,y,z)dS=\lim_{\lambda\to0}\sum^n_{i=1}f(\xi_i,\eta_i,\zeta_i)\Delta S_i f(x,y,z)dS=limλ0i=1nf(ξi,ηi,ζi)ΔSi,其中 f ( x , y , z ) f(x,y,z) f(x,y,z)叫做被积函数, ∑ \sum 叫做积分曲面

二、对面积的曲面积分的几何意义

密度不均匀的曲面的质量

三、对面积的曲面积分的性质

性质1(线性):若 α , β \alpha,\beta α,β为常数,则 ∬ ∑ [ α f ( x , y , z ) + β g ( x , y , z ) ] d S = α ∬ ∑ f ( x , y , z ) d S + β ∬ ∑ g ( x , y , z ) d S \iint\limits_{\sum}[\alpha f(x,y,z)+\beta g(x,y,z)]dS=\alpha\iint\limits_{\sum} f(x,y,z)dS+\beta\iint\limits_{\sum} g(x,y,z)dS [αf(x,y,z)+βg(x,y,z)]dS=αf(x,y,z)dS+βg(x,y,z)dS

性质2(曲面可加):若积分曲面 ∑ \sum 可分为两个光滑的曲面 ∑ 1 , ∑ 2 \sum_1,\sum_2 1,2,则 ∬ ∑ f ( x , y , z ) d S = ∬ ∑ 1 f ( x , y , z ) d S + ∬ ∑ 2 f ( x , y , z ) d S \iint\limits_{\sum} f(x,y,z)dS=\iint\limits_{\sum_1}f(x,y,z)dS+\iint\limits_{\sum_2}f(x,y,z)dS f(x,y,z)dS=1f(x,y,z)dS+2f(x,y,z)dS

性质3(比较定理):设在 ∑ \sum f ( x , y , z ) ≤ g ( x , y , z ) f(x,y,z)\leq g(x,y,z) f(x,y,z)g(x,y,z),则 ∬ ∑ f ( x , y , z ) d S ≤ ∬ ∑ g ( x , y , z ) d S \iint\limits_{\sum} f(x,y,z)dS\leq\iint\limits_{\sum} g(x,y,z)dS f(x,y,z)dSg(x,y,z)dS,特别的,有 ∣ ∬ ∑ f ( x , y , z ) d S ∣ ≤ ∬ ∑ ∣ f ( x , y , z ) ∣ d S \Big|\iint\limits_{\sum} f(x,y,z)dS\Big|\leq\iint\limits_{\sum}|f(x,y,z)|dS f(x,y,z)dS f(x,y,z)dS

四、对面积的曲面积分的计算方法

  • ∑ : z = z ( x , y ) , ( x , y ) ∈ D \sum:z=z(x,y),(x,y)\in D :z=z(x,y),(x,y)D
    ∬ ∑ f ( x , y , z ) d S = ∬ D f ( x , y , z ( x , y ) ) 1 + z x ′ 2 + z y ′ 2 d σ \iint\limits_{\sum} f(x,y,z)dS=\iint\limits_D f(x,y,z(x,y))\sqrt{1+z_x^{'2}+z_y^{'2}}d\sigma f(x,y,z)dS=Df(x,y,z(x,y))1+zx2+zy2 dσ
  • ∑ : y = y ( x , z ) , ( x , z ) ∈ D \sum:y=y(x,z),(x,z)\in D :y=y(x,z),(x,z)D
    ∬ ∑ f ( x , y , z ) d S = ∬ D f ( x , y ( x , z ) , z ) 1 + y x ′ 2 + y z ′ 2 d σ \iint\limits_{\sum} f(x,y,z)dS=\iint\limits_D f(x,y(x,z),z)\sqrt{1+y_x^{'2}+y_z^{'2}}d\sigma f(x,y,z)dS=Df(x,y(x,z),z)1+yx
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值