1.二维数组的查找
题目描述:在一个二维数组中(每个一维数组的长度相同),每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序。请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数。返回true或false
思路:由于从左到右,从上到下是递增的,所以从右上角开始搜索,根据如下规则搜索:
如果目标数字比当前位置的数字小,那么肯定不在当前位置的这一列,只可能在当前位置的前一列,往前一列搜索;
如果目标数字比当前位置的数字大,那么肯定不在当前位置的这一行,只可能在当前位置的下一行,往下一行搜索;
搜索完所有可能的行与列还没搜到数字则表明不存在,返回false,若搜索到返回true。
时间复杂度O(n+m)
class Solution {
public:
bool Find(int target, vector<vector<int> > array) {
int n=array.size()-1;
int m=array[0].size()-1;
int tmp;
int x=0;
int y=m;
while (x<=n && y>=0) {
tmp=array[x][y];
if (target==tmp) return(true);
if (target>tmp) x++;
if (target<tmp) y--;
}
return(false);
}
};
2.替换空格
题目描述:请实现一个函数,将一个字符串中的每个空格替换成“%20”。例如,当字符串为We Are Happy.则经过替换之后的字符串为We%20Are%20Happy。在该字符串数组内进行操作。
思路:从后往前可以比从前往后降低时间复杂度。首先遍历一遍字符串确定空格的个数:Num_of_blank,
那么替换空格后的新字符串长度为: Length_of_new=Length_of_old+2*Num_of_blank。
设置两个指针p1和p2分别指向原字符串长度末尾和新字符串长度末尾,判断p1所指位置是否为空格,
若是,则p2所指位置分别赋值为0,2,%,若不是,则将p1所指位置的值赋值给p2所指位置。
时间复杂度O(2n)
class Solution {
public:
void replaceSpace(char *str,int length) {
if (str==NULL or length<=0) return ;
int num_of_blank=0;
int length_of_old=0;
int length_of_new=0;
for (int i=0;str[i]!='\0';i++){
length_of_old++;
if (str[i]==' ') num_of_blank++;
}
length_of_new=length_of_old+2*num_of_blank;
char *p1=str+length_of_old;;
char *p2=str+length_of_new;
while(p1!=p2){
if(*p1!=' '){
*p2=*p1;
p2--;
}
else{
*p2='0';p2--;
*p2='2';p2--;
*p2='%';p2--;
}
p1--;
}
return;
}
};
3.从尾到头打印链表
题目描述:输入一个链表,按链表值从尾到头的顺序返回一个ArrayList。
思路:可以开一个栈,利用栈先进后出的特点,把链表的值存入栈后再输出。
也可以直接将链表反转然后输出,这里选择后者,因为省空间。
反转的做法是把当前点的next改成指向它的前面的点,但需要先存下原来的next指向的点,否则会导致断链。
接着更新前面的点和当前点。而当前点的next为空时,说明已经到末尾,将末尾作为新的head,就反转完毕。
这里若不清楚,可以结合程序自行画图理解。
时间复杂度O(n)
/**
* struct ListNode {
* int val;
* struct ListNode *next;
* ListNode(int x) :
* val(x), next(NULL) {
* }
* };
*/
class Solution {
public:
vector<int> printListFromTailToHead(ListNode* head) {
vector<int> res;
if (head==NULL) return(res);
ListNode* newhead=NULL;
ListNode* pPrev=NULL;
ListNode* pNode=head;
ListNode* pNext=NULL;
while(pNode!=NULL){
pNext=pNode->next; //存下原先next指向的点
if (pNext==NULL) newhead=pNode;
pNode->next=pPrev; //将next改成指向前面的点
pPrev=pNode; //下一步当前点变成前面的点,更新
pNode=pNext; //下一步原先next指向的点变成当前点,更新
}
while (newhead){
res.push_back(newhead->val);
newhead=newhead->next;
}
return(res);
}
};
4.重建二叉树
题目描述:输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6},则重建二叉树并返回。
思路:前序遍历为“根左右”,中序遍历为“左根右”,因此可以先通过前序遍历序列找到根的值,
然后在中序遍历序列中,对应的根的左边序列的为左子树,右边序列为右子树。在该例子中,
{4,7,2}是1的左子树,{5,3,8,6}是1的右子树,也可以对应到前序遍历序列中。
而在左子树{4,7,2}中,由前序遍历序列可知,2是子树的根,在中序遍历序列中,{4,7}在2的左边,为左子树。
可以发现这是一个重复的递归过程。只需每次存下根节点后,依次递归左右子树即可。
/**
* Definition for binary tree
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode* reConstructBinaryTree(vector<int> pre,vector<int> vin) {
int pre_len=pre.size();
int vin_len=vin.size();
if (pre_len==0 || vin_len==0 || pre_len!=vin_len)
return NULL;
int root=0;
for(;root<pre_len;root++)
if (vin[root]==pre[0]) break; //在中序遍历序列中确定根节点的位置
TreeNode *List=new TreeNode(pre[0]); //储存根节点
vector<int>pre_left,pre_right; //在前序遍历序列中划分左右子树
vector<int>vin_left,vin_right; //在中序遍历序列中根据根节点划分左右子树
for(int i=0;i<root;i++){
pre_left.push_back(pre[i+1]);
vin_left.push_back(vin[i]);
}
for (int i=root+1;i<vin_len;i++){
pre_right.push_back(pre[i]);
vin_right.push_back(vin[i]);
}
List->left=reConstructBinaryTree(pre_left,vin_left); //递归左子树
List->right=reConstructBinaryTree(pre_right,vin_right); //递归右子树
return(List); //递归结束返回该子树
}
};
待更新 ... 0.0