文章目录
零、相关简介
好的,以下是为您生成的关于离散数学二元关系的性质判定简介。
离散数学二元关系的性质判定是离散数学中一个重要的主题,涉及到关系的众多性质,如自反性、反自反性、对称性、反对称性、传递性等。正确理解和判定这些性质对于掌握和应用离散数学至关重要。本文旨在简要介绍二元关系的基本定义和几种基本性质,以及如何进行性质判定。
1、二元关系的基本定义
在离散数学中,二元关系是定义在两个集合之间,即对于任意的 a ∈ A a \in A a∈A和 b ∈ B b \in B b∈B,能够判断 ( a , b ) (a, b) (a,b)是否满足某种条件或规则。这种条件或规则就是所谓的二元关系 R R R。可以表示为 R ⊆ A × B R \subseteq A \times B R⊆A×B。
2、二元关系的基本性质
- 自反性:若对于集合 A A A中的所有元素 x x x,都有 ( x , x ) ∈ R (x, x) \in R (x,x)∈R,则称 R R R在 A A A上是自反的。
- 反自反性:若对于集合 A A A中的所有元素 x x x,都有 ( x , x ) o t i n R (x, x) otin R (x,x)otinR,则称 R R R在 A A A上是反自反的。
- 对称性:若对于任意的 x , y ∈ A x, y \in A x,y∈A,当 ( x , y ) ∈ R (x, y) \in R (x,y)∈R时,总有 ( y , x ) ∈ R (y, x) \in R (y,x)∈R,则称 R R R在 A A A上是对称的。
- 反对称性:若对于任意的 x , y ∈ A x, y \in A x,y∈A,当 ( x , y ) ∈ R (x, y) \in R (x,y)∈R且 ( y , x ) ∈ R (y, x) \in R (y,x)∈R时,必有 x = y x = y x=y,则称 R R R在 A A A上是反对称的。
- 传递性:若对于任意的 x , y , z ∈ A x, y, z \in A x,y,z∈A,当 ( x , y ) ∈ R (x, y) \in R (x,y)∈R且 ( y , z ) ∈ R (y, z) \in R (y,z)∈R时,总有 ( x , z ) ∈ R (x, z) \in R (x,z)∈R,则称 R R R在 A A A上是传递的。
3、性质的判定方法
- 自反性的判定:检查集合 A A A中的每个元素 x x x是否都满足 ( x , x ) ∈ R (x, x) \in R (x,x)∈R。如果是,则 R R R是自反的;否则,不是自反的。
- 反自反性的判定:检查集合 A A A中的每个元素 x x x是否都不满足 ( x , x ) ∈ R (x, x) \in R (x,x)∈R。如果是,则 R R R是反自反的;否则,不是反自反的。
- 对称性的判定:对于 R R R中的任意一对元素 ( x , y ) (x, y) (x,y),检查是否总有 ( y , x ) ∈ R (y, x) \in R (y,x)∈R。如果是,则 R R R是对称的;否则,不是对称的。
- 反对称性的判定:对于 R R R中的任意一对元素 ( x , y ) (x, y) (x,y)和 ( y , x ) (y, x) (y,x),如果它们同时存在于 R R R中,则检查是否总有 x = y x = y x=y。如果是,则 R R R是反对称的;否则,不是反对称的。
- 传递性的判定:对于 R R R中的任意三个元素 ( x , y ) (x, y) (x,y)、 ( y , z ) (y, z) (y,z),检查是否总有 ( x , z ) ∈ R (x, z) \in R (x,z)∈R。如果是,则 R R R是传递的;否则,不是传递的。
4、总结
二元关系的性质判定是离散数学中的一个基础而重要的内容。通过理解并应用上述判定方法,可以有效地确定一个二元关系是否具有特定的性质。这对于解决实际问题,如逻辑推理、图论分析等,具有重要的理论和实践意义。掌握这些判定方法,不仅能够帮助更好地理解离散数学的基本概念,还能为进一步学习和研究提供坚实的基础。
一、 实验目的和要求
中文五号宋体,英文五号Times new roman字体,1.25倍行距
描述本次实验的目的和要求。
二、实验环境(实验设备)
中文五号宋体,英文五号Times new roman字体,1.25倍行距
硬件:微型计算机
软件:Windows 操作系统、Microsoft Visual C++6.0、Java等可视化编程语言
三、实验原理及内容
中文五号宋体,英文五号Times new roman字体,1.25倍行距
说明:这部分内容主要包括:
1、形式化描述实验中所使用的数据结构和存储结构,给出函数之间的调用关系和数据传递方式;
2、给出核心算法的C++或Java等语言的源代码,并加上详细注释,分析算法的时间复杂度;
3、给出测试数据及运行结果、实验相关结论等。
(一)数据结构
1、全局变量:
#define MAX 100
bool flag_ref, flag_irr, flag_sym, flag_dis, flag_tra; //判断自反性、反自反性、对称性、反对称性、传递性的 flag
int arr[MAX][MAX];
int n;
2、函数调用关系
int main()
{
initial(); //相关初始化,从键盘获取信息。
Reflexive(); //自反性
Irreflexive(); //反自反性
Symmetrical(); //对称性
Dissymmetrical(); //范对称性
Transitive(); //传递性
print(); //打印结果
return 0;
}
(二)核心代码
1、代码
//自反性
void Reflexive() {
for (int i = 0; i < n; i++) {
//如果存在对角线为0,则为假。
if (arr[i][i] == 0) {
flag_ref = 0;
}
}
}
//反自反性
void Irreflexive() {
for (int i = 0; i < n; i++) {
//如果存在对角线为1,则为假。
if (arr[i][i] == 1) {
flag_irr = 0;
}
}
}
//对称性
void Symmetrical() {
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
//如果存在arr[i][j] != arr[j][i],则为假。
if (arr[i][j] != arr[j][i]) {
flag_sym = 0;
}
}
}
}
//反对称性
void Dissymmetrical() {
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
//如果存在arr[i][j] = arr[j][i],则为假。
if (arr[i][j] == arr[j][i]) {
flag_dis = 0;
}
}
}
}
//传递性
void Transitive() {
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
for (int k = 0; k < n; k++) {
//如果存在arr[i][j] = 1 且 arr[j][k] = 1,找不到arr[i][k] = 1,则为假。
if (arr[i][j] && arr[j][k] && !arr[i][k]) {
flag_tra = 0;
}
}
}
}
}
2、时间复杂度为O(n2)和O(n3)
(三)测试数据及结果结论
1、测试1
请输入元素个数
1
请输入集合各元素
1
集合A = {1}
请输入关系矩阵
1
具有以下关系
自反性
对称性
传递性
2、测试2
请输入元素个数
3
请输入集合各元素
1 4 5
集合A = {1,4,5}
请输入关系矩阵
1 0 1
0 0 0
1 0 0
具有以下关系
对称性
3、测试3
请输入元素个数
2
请输入集合各元素
1 3
集合A = {1,3}
请输入关系矩阵
1 0
0 1
具有以下关系
自反性
对称性
传递性
四、实验小结(包括问题和解决方法、心得体会、意见与建议等)
(一)实验中遇到的主要问题及解决方法
- 没有什么好办法将全局变量全部化为局部变量。
(二)实验心得
- 学会了如何利用计算机求解二元关系的性质。
- 提高了自己的编程能力。
- 对二元关系的性质有了更深入的理解。
(三)意见与建议(没有可省略)
五、全部源代码(Java)
#include <iostream>
using namespace std;
#define MAX 100
bool flag_ref, flag_irr, flag_sym, flag_dis, flag_tra; //判断自反性、反自反性、对称性、反对称性、传递性的 flag
int arr[MAX][MAX];
int n;
void initial(){
int a[MAX];
flag_ref = flag_irr = flag_sym = flag_dis = flag_tra = 1;
cout << "请输入元素个数" << endl;
cin >> n;
cout << "请输入集合各元素" << endl;
for (int i = 0; i < n; ++i) {
cin >> a[i];
}
cout << "集合A = {";
for (int i = 0; i < n - 1; ++i) {
cout << a[i] << ",";
}
cout << a[n - 1] << "}" << endl;
cout << "请输入关系矩阵" << endl;
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
cin >> arr[i][j];
}
}
cout << endl;
}
//自反性
void Reflexive() {
for(int i = 0; i < n; i++){
if(arr[i][i] == 0){
flag_ref = 0;
}
}
}
//反自反性
void Irreflexive() {
for(int i = 0; i < n; i++){
if(arr[i][i] == 1){
flag_irr = 0;
}
}
}
//对称性
void Symmetrical() {
for(int i = 0; i < n; i++){
for(int j = 0; j < n; j++){
if(arr[i][j] != arr[j][i]){
flag_sym = 0;
}
}
}
}
//反对称性
void Dissymmetrical() {
for(int i = 0; i < n; i++){
for(int j = 0; j < n; j++){
if(arr[i][j] == arr[j][i]){
flag_dis = 0;
}
}
}
}
//传递性
void Transitive() {
for(int i = 0; i < n; i++){
for(int j = 0; j < n; j++){
for(int k = 0; k < n; k++){
if(arr[i][j] && arr[j][k] && !arr[i][k]) {
flag_tra = 0;
}
}
}
}
}
void print(){
cout << "具有以下关系" << endl;
if (flag_ref) {
cout << "自反性" << endl;
}
if (flag_irr) {
cout << "反自反性" << endl;
}
if (flag_sym) {
cout << "对称性" << endl;
}
if (flag_dis) {
cout << "反对称性" << endl;
}
if (flag_tra) {
cout << "传递性" << endl;
}
cout << endl;
}
int main() {
initial();
Reflexive();
Irreflexive();
Symmetrical();
Dissymmetrical();
Transitive();
print();
return 0;
}