数字图像取证:初学者手册

---本文为Redi 在2011年所发文章 Digital image forensics: a booklet for beginners 的学习笔记与翻译

 

摘要

数字视觉能体现出当今通信最核心的意义。但近些年来,由于对数字视觉信息来源和内容篡改太过轻易,导致其可靠性逐渐被公众质疑。数字图像取证是一个全新的研究领域,它的发展目标就是从通过复原图像历史信息的角度,证实图像的合理性。所以,领域主要的研究问题集中于:

  • 对摄像设备的认证
  • 对篡改痕迹的检测

最近,得力于之前学者的卓越成果和不断增长的应用,数字图像取证吸引了更大批的学者投身其中。这篇综述即是为这些学者或IT专拣准备的,它回顾了现有的工具并对本领域的过去、现在和未来的发展提出了作者的想法。

关键词:Digital image forensics; Multimedia security; Image tampering detection; Image source authentication; Counter-forensics

 

I. 绪论

在数字时代,图像和视频已经变成了信息的主要载体。他们能被轻松的捕捉、发布和储存,使得这种信息方式能被更大程度,更细致的被利用。这也导致在今日,无论在日常还是司法环节中上,图像和视频可以作为一种通用的证明方式。最简单的视频莫过于电视上的TV节目,他们能证明播报新闻的真实性,而同样的,视频监控录像也逐渐变成法庭上取证的一种基本方式。

但有利必有弊,数字图像的便捷性同样带来了一个致命的弱点。图像处理高手可以轻松的获取并更改一张图像的内容,以及意义,但肉眼却不能辨别。更大的问题在于,廉洁而简单的编辑工具几乎遍地都是,使得非专业人士也能轻松的对图像进行修改。所以,现在对图像的恶意修改比以前更加猖獗了。数字图像取证是多媒体安全的分支,与数字水印一样,意在揭露恶意图片修改的行为。

2010年马来西亚政客授勋于英国女王伊丽莎白二世的照片引起争议,(略去介绍)图片见图一

图一:伪造图例一

类似的照片会增加人们对使用数字图像作为证据的质疑,所以在将使用图像作为证据之前,我们每次都应讨论两个关于图像来源的问题:

  1. 这张图片是否来自其声明的成像设备
  2. 这张图片是否还描述其原有的内容(本意)?

当图片源本身作为一种证据的时候,第一个问题是最重要的。这种情况比如当成像设备的所有人不便透露,或被指控的证据是来自监控的时候,我们就更关心呈现证据的人是否在成像设备的来源问题上撒谎。而另一种情况则有意思,当图像源已知时,图像是否是篡改可以很轻松的被回答,如同上例中,有了图形来源后,一眼就能看出图像是否是篡改的。但是在实际生活中,几乎没有已知的图片来源信息。所以研究者需要“盲源”的找到这些图像的历史。

而这就是Digital image forensics (DIF) 的本意,为这种盲源的研究提供帮助。它其实来源于水印和隐写(Steganography),这两个学科都能很好的利用图像处理和分析的工具来还原图像的历史信息。在DIF的发展中,有两条主要思路:

  • 尝试回答上述第一个问题,通过图像的“弹道”来挖掘成像设备的信息,选择或排除可能或不可能的设备。
  • 尝试针对第二个问题作出回答,寻找篡改图像的痕迹,通过与自然图像统计的不一致来进行判断。(Tampering detection tech.)

(接下来说明了这几年本领域的论文数,不赘述了)

所以,我们开始为想要接触本领域的相关学科大牛提供了一些现有的思路和工具,我们尝试回答这些问题:

  1. 什么是DIF,为什么它如此重要
  2. 想研究本学科,我应该做好哪些准备,我又应该如何实践?
  3. DIF的SOTA技术是什么?
  4. DIF是如何发展,它面临的挑战是什么?

本篇文章即是对这几个问题的诠释,在第二章,将会从其他多媒体安全相关的角度诠释DIF,第三章会具体讲解有关验证成像设备的方法,第四章会总览篡改检测技术,第五章将会带来作者有关领域发展的总览:包括反篡改技术,如何傻瓜鉴定和认证的方法,最后第六章将会指出现有方法的长处与短处,也将阐释将框架点明,以便后续的研究。

-----

本翻译将略过第二章,直接从第三章开始,第二章主要讲DIF和水印和隐写之间的异同,有兴趣的同学可以自己去看下原文~

III. 图像设备认证

(有关应用的说明我在这里直接略写了)

图像取证关心图像设备来源的问题主要因为:在法庭上,声明的设备和真实设备不符合可以认为证据无效。而真实的情况中,虽然我们有水印等标记性的内容,但是这些都很容易被修改和微早,所以盲源的技术才是真正需要的。

盲源取证技术主要利用了不同成像设备对图像的不同处理步骤和不同的储存方式。这些痕迹类似与相机的指纹,我们把这种取证方式分为两个层次:

  • 初级:区分相机模型
  • 高级:同种模式下不同设备的区分

我们先从最普遍的图像获取存储步骤说起,这一过程也展现了图像是如何产生,以及我们是如何利用他们进行取证的。

在介绍不同的方法之前,我们还是想提醒各位,各个方法之间没有直接的效果比较,因为这一方法是没有benchmark的,也就是统一的标准。这里需要提到一个数据集:Dresden Image Database for Benchmarking Digital Image Forensics,是专门提供给图像取证的研究者们所用的,包含了14000张图片,内容丰富,包含了73个不同的相机模型。在当时(2011年)对这个数据集还没有benchmark,但是现在就不知道了,如果我找到了会更新过来。

3.1 图像获取与储存

当我们得到一张数字图像的时候,在存储之前,还要经过许多的步骤,下面图一中,展示了各个部分的处理内容。

图一:图像的处理与存储过程

光线会通过透镜进入设备,并将它交给imaging sensor, 图像传感器。图像传感器是任何成像设备的核心内容,他由一组成像传感器组成(photo detector),每个传感器对应了相机了的一个像素,并根据不同的像素变成不同的电压值。大多数成像设备使用的是CCD(Charged coupled device)传感器,但也有些使用的是CMOS(Complementary Metal Oxide Semi.)。为了呈现图像,在光到达传感器之前需要经过一个滤波器单元,我们称为CFA(Color Filter Array),一个特殊的color mosaic(这里不知道怎么翻译,大概是色彩马赛克),它的作用是使每个像素都集合于一个特定的波长(其实这里感觉有点像ADC),即呈现出一个特定的颜色。

上述的CFA模式的框架取决于供应商,虽然Bayer's filter 可能是大多数厂家的选择。这样下来,传感器的输出就是一个马赛克(一个色块板),他呈现的是红色、绿色或者蓝色的像素在单层的排布。为了获得典型的三通道表示,信号需要进行插值处理,这里就是用到了反马赛克算法(Demosaicing algorithms),它是一个简单的插值算法,丢失的像素将会由它的临近色块估测出色块值。插值之后的图片还不能做最终的呈现,通常我们使用许多额外的算法比如白平衡(对白色的修正)、伽马修正(减少光线影响),或者图像增强等操作。最终,图像会被设备的存储单元所记录,保存的格式有很多种,但是最常用的就是JPEG。

以上就是图像的经典处理流程,但是每个供应商在每一步会有不同的选择,这种变化可以被利用起来,用来决定某张图片是否出自一个特定的相机。而决定因素,就来源于:上述的每个步骤都会造成图像的失真,这种失真的特性表现在:透镜直径、色差、像素缺陷或者CCD传感器失真以及CFA算法的统计学误差和其他图像内在的常规属性,这些都凑成了成像设备独一无二的指纹。另外,有些算法会特别的注意图像的颜色或者压缩特性。

实际上,接下来要介绍的方法大多只能分别不同的相机模式,传感器失真似乎是区分同意模型不同照片的唯一判断一句,所以最近的研究主要集中在利用传感器失真模式噪音上。但还是有最新的研究发展出了不同的方法,尤其是利用了反马赛克属性的方法。

 

3.2 针对图像源取证的方法

在这一节,我们将依照图像处理的流程整理所有的取证方法。

3.2.1主要针对图像获取步骤即透镜和CFA插值,3.2.2主要针对传感器失真,最后3.2.3主要分析了图像输出的特性,也是图像处理的最后一步。

3.2.1 获取相手动提取特征的取证方法

(原文是一大段文字,我将他们分点处理整理好,引用请查阅原文)

  • 通过透镜发生的径向畸变进行区分:在获取图像时,经过透镜获取的光源会使图像发生一定程度的形变,会让直线变成曲线,这种畸变方式可以作为源相机的指纹。Choi et al.[20] 通过这种方式,设计出一种扭曲系数,这个系数是通过Devernay's line extraction[24]的方法得到的,将扭去系数放入分类其中作为输入,就可以达到识别的目的。但这种方法只能识别不同的相机模式,并不能识别同一模式下的不同相机,同时在原图片无直线的情况下这种方法的错误率会大大上升。
  • Van及相关研究[90]使用了图片的横向色差做为区分依据,色差也是由棱镜造成的,这种颜色的失真会随着像素离中心点的位置而变化。在[47]中,模型使用了三个参数来衡量像素到中心点的距离和像素值,这种模型用来计算每对颜色通道(红绿,蓝绿)的匹配问题。模型中的每个参数都由两个通道相互信息取最大估算,最后这些参数将会作为SVM的输入,实现分类。同样,这种方法也只能分辨不同的相机模式。
  • 接着图像生成流程,就到了反马赛克这一步,这一步的计算大多取决于供应商。从图像的像素关系可以反推反马赛克的算法,所以Bayram et al.[6]等人借鉴了Farid et al.[79]设计的图像篡改检测方法,使用expectation/maximization(EM)算法对CFA插值的痕迹进行检测,最终会输出一个概率图,展示出不同频率的峰值,体现空间样本的结构关系,同时也会估算出加权的插值参数,可以用于区分不同的CFA算法。这种方法在140个图片中以95%的准确率成功分辨出了两种不同的相机模型。
  • 接着上面的方法,作者在[7]中又通过设计图像质量矩阵[3]和图像高阶统计[67]加强了算法的效果,使算法可以成功分辨三个不同的数字相机。
  • 在[62]中,Long et al. 使用了一个四像素关联模型,在每个颜色通道中获得一个参数矩阵,并将他们的主成分作为神经网络的输入,这种方法成功的区分了四种不同的相机模型,但其效果会随着像素压缩程度而下降。
  • Celiktutan et al.[15]设计出一种基于手机摄像头的CFA插值算法,作者在假设相邻灰阶位图的关系可以被一个特殊的CFA算法表征的前提下,从图像的灰阶位图中获取一系列的二元相似性(binary similarity),作者将其与图片质量矩阵一起作为输入,经过分类器学习,图像能在200中图片中成功分别出9种不同的相机模式,但当相机数量增加时,算法的准确率会下降。

后面的内容有点赘述的感觉,不再翻译,大家可以看下原文。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值