C++最小二乘法拟合平面

、`bool AlgFitPlane::FitPlane3D(std::vector& points, float& A, float& B, float& C, float& D)
{
if (points.size() < 3)
{
return false;
}

//判断是否共线
if (AlgCheckCollinear::Check(points))
{
	return false;
}

Eigen::MatrixXd Am = Eigen::MatrixXd::Zero(4, 4);
Eigen::VectorXd Bm = Eigen::VectorXd::Zero(4, 1);

Am(3, 3) = points.size();
for (std::size_t i = 0; i < points.size(); i++)
{
	Am(0, 0) += pow(points[i].x_, 2);
	Am(0, 1) += points[i].x_ * points[i].y_;
	Am(0, 2) += points[i].x_ * points[i].z_;
	Am(0, 3) += points[i].x_;

	Am(1, 1) += pow(points[i].y_, 2);
	Am(1, 2) += points[i].y_ * points[i].z_;
	Am(1, 3) += points[i].y_;

	Am(2, 2) += pow(points[i].z_, 2);
	Am(2, 3) += points[i].z_;
}

Am(1, 0) = Am(0, 1);
Am(2, 0) = Am(0, 2);
Am(2, 1) = Am(1, 2);
Am(3, 0) = Am(0, 3);
Am(3, 1) = Am(1, 3);
Am(3, 2) = Am(2, 3);

Eigen::BDCSVD<Eigen::MatrixXd> Cm = Am.bdcSvd(Eigen::ComputeThinU | Eigen::ComputeThinV);
//Eigen::JacobiSVD<Eigen::MatrixXd> Cm = Am.jacobiSvd(Eigen::ComputeThinU | Eigen::ComputeThinV);

Eigen::Matrix4d V = Cm.matrixV();
Eigen::MatrixXd U = Cm.matrixU();

Eigen::Vector4d normal;
normal << V(0, 3), V(1, 3), V(2, 3), V(3, 3);

A = normal(0, 0) / normal.head<3>().norm();
B = normal(1, 0) / normal.head<3>().norm();
C = normal(2, 0) / normal.head<3>().norm();
D = normal(3, 0) / normal.head<3>().norm();

}`

  • 3
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 最小二乘法是一种优化方法,可以用于拟合直线c。拟合直线c的目标是找到一条直线,使得数据到该直线的距离之和最小。具体步骤如下: 1. 假设直线c的方程为y = mx + b,其中m为斜率,b为截距。 2. 根据最小二乘法的原理,要使数据到直线c的距离之和最小,就需要使平方误差的和最小。平方误差的和可以表示为Σ(yi - mx - b)^2,其中yi为第i个数据的y坐标。 3. 通过对平方误差的和进行求导,并令导数等于零,可以得到斜率和截距的估计值。 4. 解方程组可以得到最终的斜率和截距估计值。 5. 将估计得到的斜率和截距带入直线c的方程中,即可得到拟合直线c。 最小二乘法拟合直线c的优是可以考虑所有数据的信息,并且得到的直线能够最大程度地拟合数据。但是需要注意的是,最小二乘法只适用于平面上的二维数据。而在实际问题中,数据可能是多维的,此时需要相应地进行扩展和调整。此外,最小二乘法也对异常值比较敏感,可能会导致拟合结果不准确。因此,在应用最小二乘法进行直线拟合时,需要谨慎地处理异常值,并根据实际情况进行适当调整。 ### 回答2: 最小二乘法是一种常用的数据拟合方法,在拟合直线c时,我们希望找到一条直线,使该直线与给定的一组数据的残差平方和最小。 假设给定的数据为(xi,yi),其中i表示第i个数据。直线c的方程可以表示为:y = mx + b,其中m和b分别是直线的斜率和截距。 要使用最小二乘法拟合直线c,首先需要计算每个数据到直线的距离(即残差)。然后,我们需要找到使残差平方和最小的斜率和截距。 计算残差的方法是,将每个数据的x坐标代入直线方程,得到该在直线上的y坐标,然后将该的观测y坐标减去预测y坐标即为残差。用残差的平方和来衡量拟合程度。 首先,我们计算斜率m和截距b的估计值。斜率的估计值可以通过以下公式得到:m = Σ((x - x') * (y - y')) / Σ((x - x')^2),其中(x', y')是数据的均值。截距的估计值可以通过以下公式得到:b = y' - m * x'。 然后,我们可以计算每个数据的残差平方和:S = Σ(y - (mx + b))^2,其中Σ表示求和。 通过最小化残差平方和,我们可以求得最佳的斜率和截距:m*和b*。 因此,最小二乘法可以帮助我们通过拟合直线c,找到最佳的斜率和截距。这样我们可以使用直线c来预测新的数据,或者对现有数据进行建模和分析。 ### 回答3: 最小二乘法是一种常用的拟合直线的方法。给定一组离散的数据{(x1, y1), (x2, y2), ..., (xn, yn)},我们希望找到一条直线y = ax + b能够最好地拟合这些数据。 假设直线y = ax + b与数据的偏差为d1, d2, ..., dn。最小二乘法的目标是使这些偏差的平方和最小。因此,我们需要求解以下方程组: ∑d² = ∑(ax + b - yi)² = min 其中,∑表示求和运算,xi和yi是数据的坐标。 通过对方程组求导,令导数为0,可以求得a和b的最优解: a = (n∑xiyi - ∑xi∑yi) / (n∑xi² - (∑xi)²) b = (1/n)∑yi - a(1/n)∑xi 其中,n表示数据的个数。 最终,通过计算得到的a和b,我们就可以得到拟合直线y = ax + b的参数。这条直线可以在最小化了数据拟合直线之间的偏差平方和的同时,尽量符合原始数据的分布。 综上所述,最小二乘法通过最小化数据拟合直线的偏差平方和来拟合直线c。它在实际应用中被广泛使用,因为它能够有效地进行数据拟合并找到最佳拟合直线。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值