spark分区数过多的问题

790 篇文章 ¥99.90 ¥299.90
本文探讨了Spark在处理二级分区时产生的近10000个文件夹,导致的小文件IO问题,严重影响了写入Hive隐藏目录的效率。在处理千万级别数据时,虽然数据量仅为3.4GB,但过多的分区反而造成了性能下降。建议在数据量较小的情况下避免过度分区,以防止产生过多小文件,提高处理效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

这里可以看到  spark的输出3.4GB 就是parque(默认启用压缩)的文件大小.

这里有个问题是 我的表是二级分区 一级有30个 二级有300个 所以总共接近10000个文件夹 途中可以看到8.2k个文件夹  即实际有8200个分区;

千万级别的数据 存储只占用3GB 但是文件夹特别多,这导致spark在输出到hive隐藏目录时  小文件IO问题导致耗时特别长.

所以分区内如果数据量太小 是没必要过度分区的,弊大于利.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Thomas2143

您的打赏是我的动力!!!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值