数据处理 numpy and pandas——006_pandas基本介绍

使用pandas中的DateFrame生成索引。以及对生成索引之后的数据进行排序、数据简单分析等操作

源代码及注释如下:

import pandas as pd
import numpy as np

s=pd.Series([1,3,6,np.nan,44,1])          # Series 是一个一维数组结构的,可以存入任一一种python的数据类型

dates = pd.date_range('20160101',periods=6)
#date_range函数主要用于生成一个固定频率的时间索引,必须指定start、end、periods中的两个参数值,否则报错。

print(dates)
df = pd.DataFrame(np.random.randn(6,4),index=dates,columns=['a','b','c','d'])   #dates行索引,columns为列索引
#  pd.DataFrame(数据,行索引,列索引)

print(df)
df1 = pd.DataFrame(np.arange(12).reshape((3,4)))                                #会默认生成行和列的序列
#   pd.DataFrame(数据)  函数中不添加索引,会默认添加索引
print('********************************************')
print(df1)
df2 = pd.DataFrame({'A':1.,
					'B':pd.Timestamp('20130102'),
					'C':pd.Series(1,index=list(range(4)),dtype='float32'),
					'D':np.array([3]*4,dtype='int32'),
					'E':pd.Categorical(["test","train","test","train"]),
					'F':'foo'})
#  pd.DataFrame(放置一个字典)
#  其中字典的索引会变成数据的列的索引,行的索引自动生成。数据不够的自动用已有的数据补全。行数由字典中最大的数据个数决定

print('********************************************')
print(df2)
print(df2.dtypes)     #每一列的数据类型
print(df2.index)     #输出所有列的标序
print('********************************************')
print(df2.columns)    #输出所有行的标序
print(df2.values)     #打印所有的元素
print(df2.describe())    #对数字类型的数据进行分析
print(df2.T)            #矩阵转置
print(df2.sort_index(axis=1,ascending=False))       #对数据的行进行倒序排序
print(df2.sort_index(axis=0,ascending=False))       #对数据的列进行倒序排序
# print(df2.sort_index(axis,ascending))   axis控制对行排序还是对列排序,ascending控制是正序(ture)还是倒序(False)
print(df2.sort_values(by='E'))     #对指定列进行排序
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值