背包问题之方案

#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;

//计算01背包问题,价值最大的方案数
int getNumberOfSchemes(vector<int>& goodsVolume,vector<int>& goodsValue, int packetSize) {
	
	int n = goodsValue.size();

	vector<int> numOfSchemes(packetSize + 1);
	vector<int> valuesOfAllVolume(packetSize + 1);
	for (int i = 0; i <= packetSize; i++) {
		numOfSchemes[i] = 1;  //初始化,当体积为i为空也是一种方案
	}

	for (int i = 0; i < n; i++) {
		for (int j = packetSize; j >= goodsVolume[i]; j--) {
			if (valuesOfAllVolume[j - goodsVolume[i]] + goodsValue[i] > valuesOfAllVolume[j]) { //装入新物品,容量j对应的方案数 
				valuesOfAllVolume[j] = valuesOfAllVolume[j - goodsVolume[i]] + goodsValue[i];
				numOfSchemes[j] = numOfSchemes[j - goodsVolume[i]];
			}
			else if (valuesOfAllVolume[j - goodsVolume[i]] + goodsValue[i] == valuesOfAllVolume[j]) {   //不装入新物品,容量j对应的方案数
				numOfSchemes[j] = numOfSchemes[j] + numOfSchemes[j - goodsVolume[i]];
			}
		}
	}

	return numOfSchemes[packetSize];
}

//01背包,刚好装满的方案数
int getNumberOfSchemesFull(vector<int>& goodsVolume, vector<int>& goodsValue, int packetSize) {

	int n = goodsValue.size();

	vector<int> numOfSchemes(packetSize + 1);
	vector<int> valuesOfAllVolume(packetSize + 1);
	for (int i = 0; i <= packetSize; i++) {
		valuesOfAllVolume[i] = INT_MIN;
	}
	valuesOfAllVolume[0] = 0;
	numOfSchemes[0] = 1;


	for (int i = 0; i < n; i++) {
		for (int j = packetSize; j >= goodsVolume[i]; j--) {
			if (valuesOfAllVolume[j - goodsVolume[i]] + goodsValue[i] > valuesOfAllVolume[j]) { //装入新物品,容量j对应的方案数 
				valuesOfAllVolume[j] = valuesOfAllVolume[j - goodsVolume[i]] + goodsValue[i];
				numOfSchemes[j] = numOfSchemes[j - goodsVolume[i]];
			}
			else if (valuesOfAllVolume[j - goodsVolume[i]] + goodsValue[i] == valuesOfAllVolume[j]) {   //不装入新物品,容量j对应的方案数
				numOfSchemes[j] = numOfSchemes[j] + numOfSchemes[j - goodsVolume[i]];
			}
		}
	}

	return numOfSchemes[packetSize];
}

/*****
* 题目:在N件物品和一个容量是M的背包。每件物品只能使用一次。求解将哪些物品装入背包,可使
*		这些物品的总体积不超过背包容量,且总价值最大。
*		输出字典序最小的方案。这里的字典序是指:所选物品的编号所构成的序列。
*分析:因为字典序最小,所以本题要倒序放物品,保证总价值最大的值为[1][m]
* 实现:
*		状态定义:f[i][j]表示从最后一个物品到第i个物品,装入容量为j的背包的最优解
*		状态转移:f[i][j] = max(f[i+1][j],f[i+1][j-v[i]]+w[i])
* 
*	不选第i个物品:f[i][j] = f[i+1][j]
*	选了第i个物品:f[i][j] = f[i+1][j-v[i]] + w[i]
**/
void getSchemes() {
	
	int n, m;
	cin >> n >> m;
	vector<int> volume(n+1);
	vector<int> values(n + 1);
	vector<vector<int>> f(n + 1, vector<int>(m + 1));
	for (int i = 1; i < n; i++) {
		cin >> volume[i] >> values[i];
	}

	for (int i = n; i >= 1; i--) {
		for (int j = 0; j <= m; j++) {
			f[i][j] = f[i + 1][j];
			if (j >= volume[i]) {
				
				f[i][j] = max(f[i][j], f[i+1][j-volume[i]]+values[i]);
			}
		}
	}

	int j = m;
	for (int i = 1; i < n; i++) {
		if (j >= volume[i] && f[i][j] == f[i + 1][j - volume[i]] + values[i]) {
			cout << i << endl;  
			j -= volume[i];         //选了第i个物品
		}
	}




}

int main() {

	int V = 10;
	
	vector<int> f(V+1);

	vector<int> goodsV = {2,2,2,2,2,4,3};
	vector<int> goodsValue = {4,4,4,4,4,6,5};

	for (int i = 0; i < 7; i++) {
		for (int j = V; j >= goodsV[i]; j--) {
			f[j] = max(f[j], f[j-goodsV[i]]+goodsValue[i]);
		}
	}

	cout << f[V] << endl;

	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值