#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
//计算01背包问题,价值最大的方案数
int getNumberOfSchemes(vector<int>& goodsVolume,vector<int>& goodsValue, int packetSize) {
int n = goodsValue.size();
vector<int> numOfSchemes(packetSize + 1);
vector<int> valuesOfAllVolume(packetSize + 1);
for (int i = 0; i <= packetSize; i++) {
numOfSchemes[i] = 1; //初始化,当体积为i为空也是一种方案
}
for (int i = 0; i < n; i++) {
for (int j = packetSize; j >= goodsVolume[i]; j--) {
if (valuesOfAllVolume[j - goodsVolume[i]] + goodsValue[i] > valuesOfAllVolume[j]) { //装入新物品,容量j对应的方案数
valuesOfAllVolume[j] = valuesOfAllVolume[j - goodsVolume[i]] + goodsValue[i];
numOfSchemes[j] = numOfSchemes[j - goodsVolume[i]];
}
else if (valuesOfAllVolume[j - goodsVolume[i]] + goodsValue[i] == valuesOfAllVolume[j]) { //不装入新物品,容量j对应的方案数
numOfSchemes[j] = numOfSchemes[j] + numOfSchemes[j - goodsVolume[i]];
}
}
}
return numOfSchemes[packetSize];
}
//01背包,刚好装满的方案数
int getNumberOfSchemesFull(vector<int>& goodsVolume, vector<int>& goodsValue, int packetSize) {
int n = goodsValue.size();
vector<int> numOfSchemes(packetSize + 1);
vector<int> valuesOfAllVolume(packetSize + 1);
for (int i = 0; i <= packetSize; i++) {
valuesOfAllVolume[i] = INT_MIN;
}
valuesOfAllVolume[0] = 0;
numOfSchemes[0] = 1;
for (int i = 0; i < n; i++) {
for (int j = packetSize; j >= goodsVolume[i]; j--) {
if (valuesOfAllVolume[j - goodsVolume[i]] + goodsValue[i] > valuesOfAllVolume[j]) { //装入新物品,容量j对应的方案数
valuesOfAllVolume[j] = valuesOfAllVolume[j - goodsVolume[i]] + goodsValue[i];
numOfSchemes[j] = numOfSchemes[j - goodsVolume[i]];
}
else if (valuesOfAllVolume[j - goodsVolume[i]] + goodsValue[i] == valuesOfAllVolume[j]) { //不装入新物品,容量j对应的方案数
numOfSchemes[j] = numOfSchemes[j] + numOfSchemes[j - goodsVolume[i]];
}
}
}
return numOfSchemes[packetSize];
}
/*****
* 题目:在N件物品和一个容量是M的背包。每件物品只能使用一次。求解将哪些物品装入背包,可使
* 这些物品的总体积不超过背包容量,且总价值最大。
* 输出字典序最小的方案。这里的字典序是指:所选物品的编号所构成的序列。
*分析:因为字典序最小,所以本题要倒序放物品,保证总价值最大的值为[1][m]
* 实现:
* 状态定义:f[i][j]表示从最后一个物品到第i个物品,装入容量为j的背包的最优解
* 状态转移:f[i][j] = max(f[i+1][j],f[i+1][j-v[i]]+w[i])
*
* 不选第i个物品:f[i][j] = f[i+1][j]
* 选了第i个物品:f[i][j] = f[i+1][j-v[i]] + w[i]
**/
void getSchemes() {
int n, m;
cin >> n >> m;
vector<int> volume(n+1);
vector<int> values(n + 1);
vector<vector<int>> f(n + 1, vector<int>(m + 1));
for (int i = 1; i < n; i++) {
cin >> volume[i] >> values[i];
}
for (int i = n; i >= 1; i--) {
for (int j = 0; j <= m; j++) {
f[i][j] = f[i + 1][j];
if (j >= volume[i]) {
f[i][j] = max(f[i][j], f[i+1][j-volume[i]]+values[i]);
}
}
}
int j = m;
for (int i = 1; i < n; i++) {
if (j >= volume[i] && f[i][j] == f[i + 1][j - volume[i]] + values[i]) {
cout << i << endl;
j -= volume[i]; //选了第i个物品
}
}
}
int main() {
int V = 10;
vector<int> f(V+1);
vector<int> goodsV = {2,2,2,2,2,4,3};
vector<int> goodsValue = {4,4,4,4,4,6,5};
for (int i = 0; i < 7; i++) {
for (int j = V; j >= goodsV[i]; j--) {
f[j] = max(f[j], f[j-goodsV[i]]+goodsValue[i]);
}
}
cout << f[V] << endl;
return 0;
}
03-02
235
02-11
1403