【ACWing】12. 背包问题求具体方案

题目地址:

https://www.acwing.com/problem/content/description/12/

N N N件物品和一个容量是 V V V的背包。每件物品只能使用一次。第 i i i件物品的体积是 v i v_i vi,价值是 w i w_i wi。求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。输出字典序最小的方案。这里的字典序是指:所选物品的编号所构成的序列。物品的编号范围是 1 , … , N 1,…,N 1,,N

输入格式:
第一行两个整数, N N N V V V,用空格隔开,分别表示物品数量和背包容积。接下来有 N N N行,每行两个整数 v i , w i v_i,w_i vi,wi,用空格隔开,分别表示第 i i i件物品的体积和价值。

输出格式:
输出一行,包含若干个用空格隔开的整数,表示最优解中所选物品的编号序列,且该编号序列的字典序最小。物品编号范围是 1 , … , N 1,…,N 1,,N

数据范围:
0 < N , V ≤ 1000 0<N,V≤1000 0<N,V1000
0 < v i , w i ≤ 1000 0<v_i,w_i≤1000 0<vi,wi1000

0 − 1 0-1 01背包问题。如果仍然设 f [ i ] [ j ] f[i][j] f[i][j]为只从前 i i i个物品里选,并且体积不大于 j j j的情况下的最大价值,那么我们每次都可以看一下 f [ i ] [ j ] f[i][j] f[i][j]是由 f [ i − 1 ] [ j ] f[i-1][j] f[i1][j]转移过来的,还是从 f [ i − 1 ] [ j − v i ] + w [ i ] f[i-1][j-v_i]+w[i] f[i1][jvi]+w[i]转移过来的,这两个情况分别对应着选第 i i i个物品还是不选第 i i i个物品。一步步向前推就能得出一个方案了。但是题目要求返回字典序最小的方案,这里将 i i i N N N倒着推回 1 1 1的过程中,无法保证选择某个转移就能得到最小的字典序(如果 f [ i − 1 ] [ j ] ≠ f [ i − 1 ] [ j − v i ] + w i f[i-1][j]\ne f[i-1][j-v_i]+w_i f[i1][j]=f[i1][jvi]+wi的话,那可以确定第 i i i个物品选不选,这时因为别无选择,所以不会产生问题。但是如果中途有类似 f [ i − 1 ] [ j ] = f [ i − 1 ] [ j − v i ] + w i f[i-1][j]= f[i-1][j-v_i]+w_i f[i1][j]=f[i1][jvi]+wi的情况发生,则无法判断两个前驱状态走哪个能得到更小的字典序,例如说,这两个前驱状态可能一个导致物品 1 1 1被选,另一个导致物品 1 1 1未选,倒着推是看不出来的)。所以我们这里要采取另一种策略,令 f [ i ] [ j ] f[i][j] f[i][j]是只从第 i ∼ n i\sim n in个物品里选,体积不超过 j j j的情况下的最大价值,也就是 i i i N N N向前遍历,这样 f [ 1 ] [ V ] f[1][V] f[1][V]就是最大价值,递推方程是: f [ i ] [ j ] = max ⁡ { f [ i + 1 ] [ j ] , f [ i + 1 ] [ j − v i ] + w i } f[i][j]=\max\{f[i+1][j],f[i+1][j-v_i]+w_i\} f[i][j]=max{f[i+1][j],f[i+1][jvi]+wi}这样再将 i i i 1 1 1 N N N遍历的时候,如果 f [ i + 1 ] [ j ] ≠ f [ i + 1 ] [ j − v i ] + w i f[i+1][j]\ne f[i+1][j-v_i]+w_i f[i+1][j]=f[i+1][jvi]+wi,那直接可以确定物品 i i i选不选;如果 f [ i + 1 ] [ j ] = f [ i + 1 ] [ j − v i ] + w i f[i+1][j]= f[i+1][j-v_i]+w_i f[i+1][j]=f[i+1][jvi]+wi,此时从最大价值的角度,物品 i i i可选可不选,但是由于 i i i是从小到大遍历的,为了使得字典序更小,物品 i i i必须选。这样就解决了要求最小字典序的问题。代码如下:

#include <iostream>
using namespace std;

const int N = 1010;
int n, m;
int v[N], w[N];
int f[N][N];

int main() {
    cin >> n >> m;
    // 一定要先把体积和价值先读进来,后面再求解;因为求解的时候i是从大到小遍历的
    for (int i = 1; i <= n; i++) cin >> v[i] >> w[i];

    for (int i = n; i >= 1; i--)
        for (int j = 0; j <= m; j++) {
            f[i][j] = f[i + 1][j];
            if (j >= v[i]) f[i][j] = max(f[i][j], f[i + 1][j - v[i]] + w[i]);
        }

	// f[1][m]是最大价值,一步步向后看物品i是否应该选
    for (int i = 1, j = m; i <= n; i++)  
        if (j >= v[i] && f[i][j] == f[i + 1][j - v[i]] + w[i]) {
            cout << i << ' ';
            j -= v[i];
        }

    return 0;
}

时空复杂度 O ( N V ) O(NV) O(NV)

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值