LCA(倍增)学习小结

To be continued…

LCA问题,即Lowest Common Ancestor 最近公共祖先
LCA问题有很多解法,比如
·暴力解法
分块解法
·倍增算法
·Tarjan算法
·LCT算法
在这里呢,我们只讨论倍增
倍增算法其实是一种类似于dp的实现
pa[i][j] p a [ i ] [ j ] 表示I号节点的 2j 2 j 个父亲

pa[i][j]=fa[i](j=0) p a [ i ] [ j ] = f a [ i ] ( j = 0 )

pa[i][j]=pa[pa[i][j1]][j1]](j>0) p a [ i ] [ j ] = p a [ p a [ i ] [ j − 1 ] ] [ j − 1 ] ] ( j > 0 )

查询的时候,我们将它们移至同一层次,再一起向上走即可
下面就直接上一道lca版题代码吧
题意:给出一棵树,和Q个询问,询问lca是谁

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<stack>
using namespace std;
const int N=100105,M=200005,LOG=20;
struct node{
    int v,nxt;
}edge[M];
int head[N],mcnt;
void add_edge(int u,int v){
    mcnt++;
    edge[mcnt].v=v;
    edge[mcnt].nxt=head[u];
    head[u]=mcnt;
}
int pa[N][LOG+1];
int deep[N];
int n,q;
void dfs(int u,int d){
    deep[u]=d;
    for(int i=head[u];i;i=edge[i].nxt){
        int v=edge[i].v;
        if(v==pa[u][0])
            continue ;
        pa[v][0]=u;
        dfs(v,d+1);
    }
}
void pre(){
    for(int j=1;(1<<j)<=n;j++)
        for(int i=1;i<=n;i++)
            if(pa[i][j-1])
                pa[i][j]=pa[pa[i][j-1]][j-1];
}
int lca(int x,int y){
    if(deep[x]<deep[y])
        swap(x,y);
    int log=0;
    int xx=deep[x];
    while(xx)
        xx>>=1,log++;
    for(int i=LOG;i>=0;i--)
        if(deep[x]-(1<<i)>=deep[y])
            x=pa[x][i];
    if(x==y)
        return x;
    for(int i=LOG;i>=0;i--)
        if(pa[x][i]&&pa[x][i]!=pa[y][i])
            x=pa[x][i],y=pa[y][i];
    return pa[x][0];
}
int main()
{
    scanf("%d%d",&n,&q);
    for(int i=1;i<=n-1;i++){
        int u,v;
        scanf("%d%d",&u,&v);
        add_edge(u,v);
        add_edge(v,u);
    }
    dfs(1,1);
    pre();
    int a,b;
    for(int i=1;i<=q;i++){
        scanf("%d%d",&a,&b);
        printf("%d\n",lca(a,b));
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值