参考的项目是官方的一个入门项目:波士顿房价预测
首先点击上面网址,fork该项目。
输入项目名称和项目描述后,创建该项目。
然后就会来到这个页面。点击运行。
现在Baidu AI Studio,创建项目并运行,即赠送12小时GPU算力,非常给力。
选择高级版,确定。等待项目运行。
进入项目。就可以开始愉快地学习了。
其实原文档讲解得也很详细,但是有很多接口没有给出说明,我尽力帮助大家说明补充。
首先导入需要的包:
paddle.fluid——PaddlePaddle深度学习框架
numpy——python基本库,用于科学计算
os——python的模块,可使用该模块对操作系统进行操作
matplotlib——python绘图库,可方便绘制折线图、散点图等图形
import paddle.fluid as fluid
import paddle
import numpy as np
import os
import matplotlib.pyplot as plt
一、数据准备
uci-housing数据集介绍
数据集共506行,每行14列。前13列用来描述房屋的各种信息,最后一列为该类房屋价格中位数。
PaddlePaddle提供了读取uci_housing训练集和测试集的接口,分别为paddle.dataset.uci_housing.train()和paddle.dataset.uci_housing.test()。
train_reader和test_reader
paddle.reader.shuffle()表示每次缓存BUF_SIZE个数据项,并进行打乱。
shuffle()在官方的API文档的描述是这样的:
shuffle(reader,buffer_size),这里reader是paddle.dataset.uci_housing.train(),这是调用paddle.dataset下的uci_housing.train()波士顿房价的训练集,OK,buf_size=BUF_SIZE,buf_size是指缓存的数据的大小。
通俗易通地来说就是,我先从波士顿房价的训练集取500个样本出来到缓存里面存着,缓存可以理解成一个可以即存即取的小房间,然后开始摇这个房间,把这个500个样本打乱顺序,接下来每次从房间里倒出batch_size=20个样本来训练。
BUF_SIZE=500
BATCH_SIZE=20
#用于训练的数据提供器,每次从缓存中随机读取批次大小的数据
train_reader = paddle.batch(paddle.reader.shuffle(paddle.dataset.uci_housing.train()
,buf_size=BUF_SIZE)
,batch_size=BATCH_SIZE)
paddle.batch()表示每BATCH_SIZE组成一个batch
batch对应的API如下,有两个参数(reader,batch_size)
同理可以理解如何处理test_reader
然后这段官方给的代码就很容易理解了。
BUF_SIZE=500
BATCH_SIZE=20
#用于训练的数据提供器,每次从缓存中随机读取批次大小的数据
train_reader = paddle.batch(
paddle.reader.shuffle(paddle.dataset.uci_housing.train(),
buf_size=BUF_SIZE),
batch_size=BATCH_SIZE)
#用于测试的数据提供器,每次从缓存中随机读取批次大小的数据
test_reader = paddle.batch(
paddle.reader.shuffle(paddle.dataset.uci_housing.test(),
buf_size=BUF_SIZE),
batch_size=BATCH_SIZE)
打印看下数据是什么样的?
PaddlePaddle接口提供的数据已经经过归一化等处理
(array([-0.02964322, -0.11363636, 0.39417967, -0.06916996, 0.14260276, -0.10109875, 0.30715859, -0.13176829, -0.24127857, 0.05489093, 0.29196451, -0.2368098 , 0.12850267]), array([15.6]))
#用于打印,查看uci_housing数据
train_data=paddle.dataset.uci_housing.train();
sampledata=next(train_data())
print(sampledata)
(array([-0.0405441 , 0.06636364, -0.32356227, -0.06916996, -0.03435197,
0.05563625, -0.03475696, 0.02682186, -0.37171335, -0.21419304,
-0.33569506, 0.10143217, -0.21172912]), array([24.]))
这里注解一下next()这个函数:
举这个实例最为方便理解,next()返回可迭代对象的下一个元素,所以next(train_data()),直接输出第一个train_data()中的元素,查看一下样本的格式。
二、网络配置
如果你了解线性回归和神经网络中的全连接层(FC),那么你一定明白多元线性回归和在不设置激活函数的情况下n个神经元与1个神经元的全连接层是一样的。
本文不详细讲理论部分,主要讲解paddlepaddle的代码,有兴趣的朋友们可以去原文仔细阅读。
附上原文档中的一张图补充说明:
#定义张量变量x,表示13维的特征值
x = fluid.layers.data(name='x', shape=[13], dtype='float32')
#定义张量y,表示目标值
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
#定义一个简单的线性网络,连接输入和输出的全连接层
#input:输入tensor;
#size:该层输出单元的数目
#act:激活函数
y_predict=fluid.layers.fc(input=x,size=1,act=None)
和大部分的深度学习框架一样,对数据的输入有很多格式上的要求。
#定义张量变量x,表示13维的特征值
x = fluid.layers.data(name='x', shape=[13], dtype='float32')
#定义张量y,表示目标值
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
上面则是给出输入数据的名字,大小,数据类型。
fluid.layers.data()官方给出API如下:
#定义一个简单的线性网络,连接输入和输出的全连接层
#input:输入tensor;
#size:该层输出单元的数目
#act:激活函数
y_predict=fluid.layers.fc(input=x,size=1,act=None)
简单地说,就是输入设置一个神经元,不要任何的激活函数,输入是x,输出是一个值。
关于fluid.layers.fc()的API比较长,大家可以在这里看到fluid.layers.fc()的API
定义损失函数
和其它框架一样,我们也需要定义损失函数。
此处使用均方误差损失函数,也就是我们常说的MSE。
square_error_cost(input,lable):接受输入预测值和目标值,并返回方差估计,即为(y-y_predict)的平方。
cost = fluid.layers.square_error_cost(input=y_predict, label=y)
#求一个batch的损失值
avg_cost = fluid.layers.mean(cost)
#对损失值求平均值
定义优化函数
和其它深度学习的框架一样,需要定义求解最优值的方式。
此处使用的是随机梯度下降SGD,此外还有带动量的SGD,adam等等。
optimizer = fluid.optimizer.SGDOptimizer(learning_rate=0.001)
opts = optimizer.minimize(avg_cost)
我们可以看到minimize这一步初始化了startup_program。
简单了解一下startup_program:
然后下一步是这句代码:
test_program = fluid.default_main_program().clone(for_test=True)
我们先来看下default_main_program()的API,了解它的作用:
此函数用于获取默认或全局main program(主程序),该主程序用于训练和测试模型。
关于clone()函数的说明如下:
简单理解就是clone是克隆的意思,也就是我们要复制一份一摸一样的program,里面的参数for_test,如果是clone(for_test = True)则意思和字面一样,复制一份主程序用于测试集,不会像训练集一样跟着训练(这里是我个人的理解,不知道是否正确)
在上述模型配置完毕后,得到两个fluid.Program:fluid.default_startup_program() 与fluid.default_main_program() 配置完毕了。
参数初始化操作会被写入fluid.default_startup_program()
fluid.default_main_program()用于获取默认或全局main program(主程序)。该主程序用于训练和测试模型。fluid.layers 中的所有layer函数可以向 default_main_program 中添加算子和变量。default_main_program 是fluid的许多编程接口(API)的Program参数的缺省值。例如,当用户program没有传入的时候, Executor.run() 会默认执行 default_main_program 。
模型训练
创建Executor
首先定义运算场所 fluid.CPUPlace()和 fluid.CUDAPlace(0)分别表示运算场所为CPU和GPU
Executor:接收传入的program,通过run()方法运行program。
use_cuda = False
#use_cuda为False,表示运算场所为CPU;use_cuda为True,表示运算场所为GPU
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
我们先学习一下Executor的API
首先它需要输入的参数只有place,而CUDAplace()的作用是:
()里面代表GPU的卡数,所以CUDAplace(0)代表不使用GPU,CUDAplace(n)则代表使用n张GPU
第二点:
exe = fluid.Executor(place)
#创建一个Executor实例exe
exe.run(fluid.default_startup_program())
#Executor的run()方法执行startup_program(),进行参数初始化
上面两个语句说明,Executor()首先要实例化,然后用run()方法来执行startup_program(),进行参数初始化。
我们可以看看run()下的API:
run()方法的作用是执行program
Executor则是可以接收传入的program,并根据feed map(输入映射表)和fetch_list(结果获取表) 向program中添加feed operators(数据输入算子)和fetch operators(结果获取算子)。
feed map为该program提供输入数据。fetch_list提供program训练结束后用户预期的变量(或识别类场景中的命名)。
从这里我们就能看出接下来就是要定义上面说的feed map和fetch_list。
定义输入数据维度
DataFeeder负责将数据提供器(train_reader,test_reader)返回的数据转成一种特殊的数据结构,使其可以输入到Executor中。这里我的理解应该就是我上面说的feed map。
feed_list设置向模型输入的向变量表或者变量表名。
# 定义输入数据维度
feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
#feed_list:向模型输入的变量表或变量表名
定义绘制训练过程的损失值变化趋势的方法
定义这个draw_train_process()函数。
iter=0;
iters=[]
train_costs=[]
def draw_train_process(iters,train_costs):
title="training cost"
plt.title(title, fontsize=24)
plt.xlabel("iter", fontsize=14)
plt.ylabel("cost", fontsize=14)
plt.plot(iters, train_costs,color='red',label='training cost')
plt.grid()
plt.show()
实际上这段代码还是挺好理解的,iters从后面训练的代码来看就是第几个batch,这里输出的是每一个batch和这个batch对应的损失函数的值。
正常的话,这个图画出来就是逐步下降的一个图。
训练并保存模型
Executor接收传入的program,并根据feed_list(输入映射表)和fetch_list(结果获取表) 向program中添加feed operators(数据输入算子)和fetch operators(结果获取算子)。 feed_list为该program提供输入数据。fetch_list提供program训练结束后用户预期的变量。
上面这段话,在讲解Executor的API时已经重复了两次了,大家再次细细阅读加深印象。
注:enumerate() 函数用于将一个可遍历的数据对象(如列表、元组或字符串)组合为一个索引序列,同时列出数据和数据下标。
EPOCH_NUM=50
#一共跑50个epoch
model_save_dir = "/home/aistudio/work/fit_a_line.inference.model"
#把模型存在这个路径下面
for pass_id in range(EPOCH_NUM):
#训练EPOCH_NUM轮
# 开始训练并输出最后一个batch的损失值
train_cost = 0
for batch_id, data in enumerate(train_reader()):
#遍历train_reader迭代器
train_cost = exe.run(program=fluid.default_main_program()
#运行主程序
,feed=feeder.feed(data)
'''
喂入一个batch的训练数据,
根据feed_list和data提供的信息,
将输入数据转成一种特殊的数据结构。
我这里理解是把data转化成feed_list要求
的那种形式。
'''
,fetch_list=[avg_cost])
if batch_id % 40 == 0:
print("Pass:%d, Cost:%0.5f" % (pass_id, train_cost[0][0]))
'''
打印最后一个batch的损失值(官方)
我感觉是不对的,前面的代码写的是
BUF_SIZE=500
BATCH_SIZE=20
所以这个代码应该改成
if batch_id % 20 == 0:
'''
iter=iter+BATCH_SIZE
iters.append(iter)
train_costs.append(train_cost[0][0])
# 开始测试并输出最后一个batch的损失值
test_cost = 0
for batch_id, data in enumerate(test_reader()):
#遍历test_reader迭代器
test_cost= exe.run(program=test_program
#运行测试cheng
,feed=feeder.feed(data)
#喂入一个batch的测试数据
,fetch_list=[avg_cost])
#fetch均方误差
print('Test:%d, Cost:%0.5f' % (pass_id, test_cost[0][0]))
#打印最后一个batch的损失值
#保存模型
# 如果保存路径不存在就创建
if not os.path.exists(model_save_dir):
os.makedirs(model_save_dir)
print ('save models to %s' % (model_save_dir))
#保存训练参数到指定路径中,构建一个专门用预测的program
fluid.io.save_inference_model(model_save_dir
#保存推理model的路径
,['x']
#推理(inference)需要 feed 的数据
,[y_predict]
#保存推理(inference)结果的 Variables
,exe
#exe 保存 inference model
)
draw_train_process(iters,train_costs)
这里有一点需要解释的是,batch_size = 20,其实一个batch是抽了21个数据的,因为如果你print(“batch_id=%d”%batch_id)的话,你会发现一个enumerate内batch_id是从0-20,所以一共是21个样本。
然后呢,我们epoch是50个,其实说白了就是跑了50个batch,每个batch_size是21,一共跑了50*21=1050个数据。
之前写的那个画图的函数就这个效果:
模型预测
创建预测用的Executor
infer_exe = fluid.Executor(place) #创建推测用的executor
inference_scope = fluid.core.Scope() #Scope指定作用域
可视化真实值与预测值方法定义
infer_results=[]
groud_truths=[]
#绘制真实值和预测值对比图
def draw_infer_result(groud_truths,infer_results):
title='Boston'
plt.title(title, fontsize=24)
x = np.arange(1,20)
y = x
plt.plot(x, y)
plt.xlabel('ground truth', fontsize=14)
plt.ylabel('infer result', fontsize=14)
plt.scatter(groud_truths, infer_results,color='green',label='training cost')
plt.grid()
plt.show()
开始预测
通过fluid.io.load_inference_model,预测器会从params_dirname中读取已经训练好的模型,来对从未遇见过的数据进行预测。
with fluid.scope_guard(inference_scope):
#修改全局/默认作用域(scope), 运行时中的所有变量都将分配给新的scope。
#从指定目录中加载 推理model(inference model)
[inference_program,
#推理的program
feed_target_names,
#需要在推理program中提供数据的变量名称
fetch_targets] = fluid.io.load_inference_model(
#fetch_targets: 推断结果
model_save_dir,
#model_save_dir:模型训练路径
infer_exe)
#infer_exe: 预测用executor
#获取预测数据
infer_reader = paddle.batch(paddle.dataset.uci_housing.test(),
#获取uci_housing的测试数据
batch_size=200)
#从测试数据中读取一个大小为200的batch数据
#从test_reader中分割x
test_data = next(infer_reader())
test_x = np.array([data[0] for data in test_data]).astype("float32")
test_y= np.array([data[1] for data in test_data]).astype("float32")
results = infer_exe.run(inference_program,
#预测模型
feed={feed_target_names[0]:np.array(test_x)},
#喂入要预测的x值
fetch_list=fetch_targets)
#得到推测结果
print("infer results: (House Price)")
for idx, val in enumerate(results[0]):
print("%d: %.2f" % (idx, val))
infer_results.append(val)
print("ground truth:")
for idx, val in enumerate(test_y):
print("%d: %.2f" % (idx, val))
groud_truths.append(val)
draw_infer_result(groud_truths,infer_results)
画出来的图是这样的