学习日记
Carr_001
写的任何东西只是自己理解,如有错误诚望指出
展开
-
Day1:贝叶斯统计法+最大后验估计+学习XOR+拉格朗日对偶性
1.贝叶斯统计法点估计(包含距估计和最大似然估计)属于概率派统计方法还有另外一种估计θ的方法是贝叶斯统计方法(比如最大后验估计)Q:什么是先验,什么是后验?A:先验,θ已知的就是先验,也就是说,在任何事情没发生前,我知道分布p(θ);后验,只要了跟θ相关的信息(比如样本),来预测p(θ),就是后验。记住下面公式(似乎在学习EKF的时候见过)实例:贝叶斯线性回归与通过...原创 2019-06-25 22:00:27 · 265 阅读 · 0 评论 -
参数检验/非参数检验+统计学习的模型策略算法+sigmoid/softmax+相对熵+交叉熵
1.参数检验/非参数检验参数检验:通过样本预测分布的参数,需要预知变量分布模型非参数检验:通过样本预测分布形态,无需预知变量分布模型参考百度2.统计学习方法的模型,策略,算法讨论方法:概率法,实数域的映射法回想昨天的贝叶斯方法的公式,有异曲同工的感觉。1.特征空间:对于映射f,如果f(x) = λx,x是特征向量,λ是特征向量,特征空间是针对特定的映射f的特征空间...原创 2019-06-26 22:21:07 · 317 阅读 · 0 评论 -
今日总结
1.对抗网络是指,当输出x'与x很接近,人类察觉不出来差别,但是网络对这个误差很敏感,一种解决方法是训练带噪声的x',让输出y'与y接近2.K近邻法,kd树3.隐形马尔科夫模型,计算观测的前向算法4.条件随机场的参数化形式和简化形式...原创 2019-07-02 22:36:04 · 86 阅读 · 0 评论 -
relu/tanh激活函数+反向传播计算图
1.relu/tanh激活函数Q:为什么要有激活函数?A:如果没有激活函数,那么输出只是输入的线性组合,意义不大比如:有输入x1,x2…xn,如果没有激活函数,最终的输出可以写成表达式z=a1×x1+a2×x2+..an×xnz=a1\times x1+a2\times x2+..an\times xnz=a1×x1+a2×x2+..an×xn这还不如直接只用一层直接输出呢,不过,线性...原创 2019-06-29 21:23:32 · 3514 阅读 · 1 评论 -
L2、L1正则化+增加噪声(网络/输出)+半监督/多任务+生成模型/判别模型
1.L2、L1正则化L2:放公式:一步的情况:**从整体看,**分析最小值W附近的情况,假设J在W取得最小值,我们可以用二次函数来近似表达J在W*邻域:Q:是hessian而不是jacobi?A:因为这里假设的是二次函数,也就是存在二阶导数。如果假设w周围是一次的话,那么就是J(w-w),J是雅可比矩阵由于是在最小值W*附近,所以H对称半正定。加上weight decay(...原创 2019-06-30 22:57:15 · 880 阅读 · 0 评论