1. 试证明哈夫曼问题具有贪心选择性质:
二叉树T表示字符集C的一个最优前缀码,证明可以对T作适当修改后得到一棵新的二叉树T”,在T”中x和y是最深叶子且为兄弟,同时T”表示的前缀码也是C的最优前缀码。设b和c是二叉树T的最深叶子,且为兄弟。设f(b)<=f(c),f(x)<=f(y)。由于x和y是C中具有最小频率的两个字符,有f(x)<=f(b),f(y)<=f(c)。首先,在树T中交换叶子b和x的位置得到T',然后再树T'中交换叶子c和y的位置,得到树T''。如图所示:
由此可知,树T和T'的前缀码的平均码长之差为:
因此,T''表示的前缀码也是最优前缀码,且x,y具有相同的码长,同时,仅最优一位编码不同。
2. 试证明哈夫曼问题具有最优子结构性质:
二叉树T表示字符集C的一个最优前缀码,x和y是树T中的两个叶子且为兄弟,z是它们的父亲。若将z当作是具有频率f(z)=f(x)+f(y)的字符,则树T’=T-{x,y}表示字符集C’=C-{x, y} ∪ { z}的一个最优前缀码。因此,有:
如果T’不是C’的最优前缀码,假定T”是C’的最优前缀码,那么有
,显然T”’是比T更优的前缀码,跟前提矛盾!故T'所表示的C'的前缀码是最优的。