哈夫曼问题的贪心选择性质和最优子结构性质证明

1. 试证明哈夫曼问题具有贪心选择性质:

 二叉树T表示字符集C的一个最优前缀码,证明可以对T作适当修改后得到一棵新的二叉树T”,在T”中x和y是最深叶子且为兄弟,同时T”表示的前缀码也是C的最优前缀码。设b和c是二叉树T的最深叶子,且为兄弟。设f(b)<=f(c),f(x)<=f(y)。由于x和y是C中具有最小频率的两个字符,有f(x)<=f(b),f(y)<=f(c)。首先,在树T中交换叶子b和x的位置得到T',然后再树T'中交换叶子c和y的位置,得到树T''。如图所示:

    由此可知,树T和T'的前缀码的平均码长之差为:

     因此,T''表示的前缀码也是最优前缀码,且x,y具有相同的码长,同时,仅最优一位编码不同。

2. 试证明哈夫曼问题具有最优子结构性质:

 二叉树T表示字符集C的一个最优前缀码,xy是树T中的两个叶子且为兄弟,z是它们的父亲。若将z当作是具有频率f(z)=f(x)+f(y)的字符,则树T’=T-{x,y}表示字符集C’=C-{x, y} { z}的一个最优前缀码。因此,有:

     如果T’不是C’的最优前缀码,假定T”C’的最优前缀码,那么有

,显然T”’是比T更优的前缀码,跟前提矛盾!故T'所表示的C'的前缀码是最优的。

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值