深度聚类中ARI、AMI以及ACC指标解析

ARI(Adjusted Rand Index)

调整兰德指数,用于度量聚类结果与真实类别之间的相似度。它考虑了随机分配的影响,值越大表示聚类结果与真实类别越相似。ARI的取值范围为-1到1,值越大表示聚类结果越好.

计算公式:

ARI = (sum_ij(C(n_ij, 2)) - [sum_i(C(a_i, 2)) * sum_j(C(b_j, 2)) / C(n, 2)]) / (1/2 * [sum_i(C(a_i, 2)) + sum_j(C(b_j, 2))] - [sum_i(C(a_i, 2)) * sum_j(C(b_j, 2)) / C(n, 2)])

其中,C(n, k)表示组合数,即从n个元素中选取k个元素的组合数。

其中,n_{ij}表示聚类结果中第 i 类与真实类别中第 j 类共同包含的样本数量,a_i 表示聚类结果中第 i 类的样本数量,b_j 表示真实类别中第 j 类的样本数量,n 表示总样本数。
实例:

样本序列 真实类别 聚类结果
1 A A
2 A C
3 A C
4 B C
5 B B
6 B C
7 C B
8 C B
9 C C

计算聚类结果中相同类别和不同类别的样本数量

  • 如果两个样本属于同一真实类别,同时也属于同一聚类结果,那么它们就是一个共现项,对应的共现矩阵中该项的值加1。
  • 如果两个样本属于同一真实类别,但属于不同的聚类结果,那么它们也是一个共现项,对应的共现矩阵中该项的值加1。
  • 如果两个样本属于不同的真实类别,但属于同一聚类结果,那么它们也是一个共现项,对应的共现矩阵中该项的值加1。
  • 如果两个样本属于不同的真实类别,且属于不同的聚类结果,那么它们不是一个共现项,对应的共现矩阵中该项的值不变。
A B C
A 1 0 2
B 0 1 2
C 0 2 1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值