# Coursera机器学习基石作业二python实现

##机器学习基石作业二

import numpy as np
import random
class decisonStump(object):
def __init__(self,dimension,data_count,noise):
self.dimension=dimension
self.data_count=data_count
self.noise=noise
def generate_dataset(self):
dataset=np.zeros((self.data_count,self.dimension+1))
for i in range(self.data_count):
x=random.uniform(-1,1)
line=[]
line.append(x)
y=np.sign(x)*np.sign(random.uniform(0,1)-self.noise)
line.append(y)
dataset[i:]=line
return dataset
def get_theta(self,dataset):
l=np.sort(dataset[:,0])
theta=np.zeros((self.data_count,1))
for i in range(self.data_count-1):
theta[i]=(l[i]+l[i+1])/2
theta[-1]=1
return theta
def question1718(self):
sum_e_in = 0
sum_e_out=0
for i in range(5000):
dataset = self.generate_dataset()
theta=self.get_theta(dataset)
e_in = np.zeros((2, self.data_count))
for j in range(self.data_count):
a=dataset[:,1]*np.sign(dataset[:,0]-theta[j])
e_in[0][j] = (self.data_count - np.sum(a)) / (2 * self.data_count)  # 数组只有-1和+1，可直接计算出-1所占比例
e_in[1][j] = (self.data_count - np.sum(-a)) / (2 * self.data_count)
min0, min1 = np.min(e_in[0]), np.min(e_in[1])
s=0
theta_best=0
if min0 < min1:
s = 1
theta_best = theta[np.argmin(e_in[0]),0]
sum_e_in+=min0
else:
s = -1
theta_best = theta[np.argmin(e_in[1]),0]
sum_e_in+=min1
e_out=0.5+0.3*s*(np.abs(theta_best)-1)
sum_e_out+=e_out
print(sum_e_in/5000,sum_e_out/5000)

if __name__=='__main__':
decision=decisonStump(1,20,0.2)
decision.question1718()


import numpy as np

class decisonStump(object):
def get_train_dataset(self,path):
with open(path,'r') as f:
dimension=len(rawData[0].strip().split(' '))-1
data_count=len(rawData)
data_set=np.zeros((data_count,dimension+1))
for i in range(data_count):
data_set[i:]=rawData[i].strip().split(' ')
return data_set,dimension,data_count
def get_theta(self,dataset):
data_count=len(dataset)
l=np.sort(dataset)
theta=np.zeros((data_count,1))
for i in range(data_count-1):
theta[i]=(l[i]+l[i+1])/2
theta[-1]=1
return theta
def question19(self):
dataset,dimension,data_count=self.get_train_dataset('hw2_train.dat.txt')
s1=[]
theta_best1=[]
E_in=[]
for i in range(dimension):
theta=self.get_theta(dataset[:,i])
e_in = np.zeros((2, data_count))
for j in range(data_count):
a=dataset[:,-1]*np.sign(dataset[:,i]-theta[j])
e_in[0][j] = (data_count - np.sum(a)) / (2 * data_count)  # 数组只有-1和+1，可直接计算出-1所占比例
e_in[1][j] = (data_count - np.sum(-a)) / (2 * data_count)
min0,min1=np.min(e_in[0,:]),np.min(e_in[1,:])
if min0>=min1:
s1.append(-1)
theta_best1.append(theta[np.argmin(e_in[1])])
else:
s1.append(1)
theta_best1.append(theta[np.argmin(e_in[0])])
E_in.append(np.min(np.min(e_in)))
minS=s1[np.argmin(E_in)]
minTheta=theta_best1[np.argmin(E_in)]
print(np.min(E_in))
return minS,minTheta
def question20(self):
s,theta=self.question19()
dataset, dimension, data_count = self.get_train_dataset('hw2_test.dat.txt')
E_out=[]
for i in range(dimension):
a=dataset[:,-1]*np.sign(dataset[:,i]-theta)*s
e_out=(data_count-np.sum(a))/(2*data_count)
E_out.append(e_out)
print(np.min(E_out))

if __name__=='__main__':
decision=decisonStump()
decision.question20()


©️2019 CSDN 皮肤主题: 技术黑板 设计师: CSDN官方博客