最小生成树_kursal算法

思想:贪心+并查集
算法过程:
最开始图为一个一个独立的点.
1.将边的权值从小到大排序. --贪心
2.从权值小的开始往图中添加边.
如果这个边的起点和终点在之前选的边的影响下就已经连通 --并查集
不选此边(选了也多余) --贪心
否则
将此边添加到图中.
3.直到选完n-1条边.(选不完代表此图不连通)

解释:
①复杂度:快排MlogM,N-1次并查集LogN => O(MlogM) --- 通常M远大于N
②检查两点的连通性可用dfs,bfs,但复杂度太高,转换成集合,使用并查集.
代码(洛谷模板题):

#include<bits/stdc++.h>
using namespace std;
//kstual算法
//贪心 + 并查集
const int maxv = 5e3+5;
const int maxe = 2e5+5;
int sign,n,m,ans;
int u[maxe],v[maxe];
int f[maxv];
struct Node
{
    int v,pos;
    bool operator < (const Node & a)
    {
        return v < a.v;
    }
}node[maxv];
void addedge(int x,int y,int z)
{
    u[++sign] = x;
    v[sign] = y;
    //w[sign] = z;
}
int getf(int x)
{
    return f[x] == x?x:(f[x] = getf(f[x]));
}
int mer(int x,int y) //返回是否在同一集合
{
    int fx = getf(x),fy = getf(y);
    if(fx == fy)
        return 0;
    else
    {
        f[fy] = fx;
        return 1;
    }
}
int main()
{
    scanf("%d%d",&n,&m);
    int x ,y,z;
    for(int i = 1;i<=m;i++)
    {
        scanf("%d%d%d",&x,&y,&z);
        addedge(x,y,z);
        //addedge(y,x,z);
        node[i].v = z;
        node[i].pos = i;
    }
    sort(node+1,node + 1 + m);
    //初始化并查集
    for(int i = 1;i<=n;i++)
        f[i] = i;
    int cnt = 0;
    for(int i = 1;i<=m;i++)
    {
       if(mer(u[node[i].pos], v[node[i].pos]))
        {
            cnt++;
            ans += node[i].v;
        }
       if(cnt == n-1)
         break;
    }
    if(cnt == n-1)
        printf("%d\n",ans);
    else
        printf("orz\n");
    return 0;
}


//

/*


4 6 1
1 2 2
2 3 2
2 4 1
1 3 5
3 4 3
1 4 4

3 3
1 2 1
1 3 5
2 3 3

*/
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值