思想:贪心+并查集
算法过程:
最开始图为一个一个独立的点.
1.将边的权值从小到大排序. --贪心
2.从权值小的开始往图中添加边.
如果这个边的起点和终点在之前选的边的影响下就已经连通 --并查集
不选此边(选了也多余) --贪心
否则
将此边添加到图中.
3.直到选完n-1条边.(选不完代表此图不连通)
解释:
①复杂度:快排MlogM,N-1次并查集LogN => O(MlogM) --- 通常M远大于N
②检查两点的连通性可用dfs,bfs,但复杂度太高,转换成集合,使用并查集.
代码(洛谷模板题):
#include<bits/stdc++.h>
using namespace std;
//kstual算法
//贪心 + 并查集
const int maxv = 5e3+5;
const int maxe = 2e5+5;
int sign,n,m,ans;
int u[maxe],v[maxe];
int f[maxv];
struct Node
{
int v,pos;
bool operator < (const Node & a)
{
return v < a.v;
}
}node[maxv];
void addedge(int x,int y,int z)
{
u[++sign] = x;
v[sign] = y;
//w[sign] = z;
}
int getf(int x)
{
return f[x] == x?x:(f[x] = getf(f[x]));
}
int mer(int x,int y) //返回是否在同一集合
{
int fx = getf(x),fy = getf(y);
if(fx == fy)
return 0;
else
{
f[fy] = fx;
return 1;
}
}
int main()
{
scanf("%d%d",&n,&m);
int x ,y,z;
for(int i = 1;i<=m;i++)
{
scanf("%d%d%d",&x,&y,&z);
addedge(x,y,z);
//addedge(y,x,z);
node[i].v = z;
node[i].pos = i;
}
sort(node+1,node + 1 + m);
//初始化并查集
for(int i = 1;i<=n;i++)
f[i] = i;
int cnt = 0;
for(int i = 1;i<=m;i++)
{
if(mer(u[node[i].pos], v[node[i].pos]))
{
cnt++;
ans += node[i].v;
}
if(cnt == n-1)
break;
}
if(cnt == n-1)
printf("%d\n",ans);
else
printf("orz\n");
return 0;
}
//
/*
4 6 1
1 2 2
2 3 2
2 4 1
1 3 5
3 4 3
1 4 4
3 3
1 2 1
1 3 5
2 3 3
*/