数学证明随笔

f ( x ) 在 ( a , b ) 内 二 阶 可 导 , 且 f ′ ′ ( x ) > 0 , 证 明 对 于 任 意 的 x 1 , x 2 ∈ ( a , b ) , 且 x 1 ≠ x 2 及 λ ( 0 < λ < 1 ) , 恒 有 f [ λ x 1 + ( 1 − λ x 2 ) ] < λ f ( x 1 ) + ( 1 − λ ) f ( x 2 ) . f(x)在(a,b)内二阶可导,且f''(x)>0,证明对于任意的x_1,x_2\in(a,b),且x_1\neq x_2及\lambda(0<\lambda<1),恒有f[\lambda x_1+(1-\lambda x_2)]< \lambda f(x_1)+(1-\lambda) f(x_2). f(x)(a,b)f(x)>0,x1,x2(a,b),x1=x2λ(0<λ<1),f[λx1+(1λx2)]<λf(x1)+(1λ)f(x2).
首先给出一个引理,对于 f ( x ) 在 [ a , b ] 上 连 续 , ( a , b ) 内 二 阶 可 导 且 f ′ ′ ( x ) > 0 , f ( a ) = f ( b ) = 0 , 则 有 f ( x ) < 0. f(x)在[a,b]上连续,(a,b)内二阶可导且f''(x)>0,f(a)=f(b)=0,则有f(x)<0. f(x)[a,b](a,b)f(x)>0,f(a)=f(b)=0,f(x)<0.
证明完毕这个问题后会对上述结论进行证明。
本题为张宇基础30讲的一道例题,例题上的两种解法分别为拉格朗日法和泰勒公式法,在此给出一种用构造函数解决的方法。
显然有 ( a , f ( a ) ) , ( b , f ( b ) ) 两 点 连 成 的 直 线 方 程 为 y − f ( b ) f ( a ) − f ( b ) = x − b a − b 进 行 整 理 可 以 得 到 y = [ f ( a ) − f ( b ) ] x − a a − b + f ( b ) , 因 此 可 以 设 g ( x ) = y , F ( x ) = f ( x ) − g ( x ) (a,f(a)),(b,f(b))两点连成的直线方程为\\\qquad\frac{y-f(b)} {f(a)-f(b)}=\frac{x-b} {a-b}\\进行整理可以得到\\y=[f(a)-f(b)]\frac{x-a} {a-b}+f(b),\\因此可以设\\g(x)=y,F(x)=f(x)-g(x) (a,f(a)),(b,f(b))线f(a)f(b)yf(b)=abxby=[f(a)f(b)]abxa+f(b),g(x)=y,F(x)=f(x)g(x)
注意到 F ( a ) = F ( b ) = 0 , 同 时 F ′ ′ ( x ) = f ′ ′ ( x ) > 0 , 因 此 恒 有 F ( x ) < 0 所 以 f ( x ) < g ( x ) , 恒 成 立 在 ( a , b ) 上 。 设 t = λ x 1 + ( 1 − λ x 2 ) , g ( t ) = λ f ( x 1 ) + ( 1 − λ ) f ( x 2 ) , 又 因 为 f ( t ) < g ( t ) , Q E D . \\F(a)=F(b)=0,\\同时F''(x)=f''(x)>0,因此恒有F(x)<0\\所以f(x)<g(x),恒成立在(a,b)上。设t=\lambda x_1+(1-\lambda x_2),\\g(t)= \lambda f(x_1)+(1-\lambda) f(x_2),又因为f(t)<g(t),\\QED. F(a)=F(b)=0,F(x)=f(x)>0,F(x)<0f(x)<g(x),(a,b)t=λx1+(1λx2),g(t)=λf(x1)+(1λ)f(x2),f(t)<g(t)QED.
引理证明:
f ( a ) = f ( b ) = 0 , 可 知 ∃ ξ ∈ ( a , b ) 使 得 f ′ ( ξ ) = 0 又 因 为 f ′ ′ ( x ) > 0 , 因 此 f ′ ( x ) 单 调 递 增 , 必 然 有 ( a , ξ )   f ′ ( x ) < 0 , ( ξ , b )   f ′ ( x ) > 0. 所 以 f ( x ) 在 ( a , ξ ) 单 调 递 减 , 在 ( ξ , b ) 单 调 递 增 , 所 以 f ( x ) < f ( a ) = 0 , f ( b ) = 0 > f ( x ) → f ( x ) < 0 Q E D . f(a)=f(b)=0,可知\exist\xi\in(a,b)使得f'(\xi)=0\\又因为f''(x)>0,因此f'(x)单调递增,必然有(a,\xi)\ f'(x)<0,(\xi,b)\ f'(x)>0.所以f(x)在(a,\xi)单调递减,在(\xi,b)单调递增,所以f(x)<f(a)=0,f(b)=0>f(x)\rightarrow f(x)<0\\QED. f(a)=f(b)=0,ξ(a,b)使f(ξ)=0f(x)>0,f(x)(a,ξ) f(x)<0,(ξ,b) f(x)>0.f(x)(a,ξ)(ξ,b)f(x)<f(a)=0,f(b)=0>f(x)f(x)<0QED.

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值